Path: news.mathworks.com!newsfeed-00.mathworks.com!news.tele.dk!feed118.news.tele.dk!news.tele.dk!small.news.tele.dk!newsgate.cistron.nl!newsgate.news.xs4all.nl!news2.euro.net!feeder.news-service.com!94.75.214.39.MISMATCH!aioe.org!.POSTED!not-for-mail
From: <HIDDEN>
Newsgroups: comp.soft-sys.matlab
Subject: Re: ode with definite integral
Date: Thu, 30 Jun 2011 00:17:06 -0700
Organization: Aioe.org NNTP Server
Lines: 27
Message-ID: <iuh7tn$81c$1@speranza.aioe.org>
References: <iuh6ma$ggi$1@newscl01ah.mathworks.com>
Reply-To: <HIDDEN>
NNTP-Posting-Host: TUXTYYqX1yG7hs3zxUg7ng.user.speranza.aioe.org
Mime-Version: 1.0
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 7bit
X-Complaints-To: abuse@aioe.org
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.2.18) Gecko/20110616 Thunderbird/3.1.11
X-Notice: Filtered by postfilter v. 0.8.2
Xref: news.mathworks.com comp.soft-sys.matlab:734284

On 6/29/2011 11:56 PM, Grzegorz Knor wrote:
> Hello,
> I wonder how to solve such a task:
> Suppose we want to solve a differential equation in the form:
> dy/dt = f(t) = exp(-te)
> where:
> te = \int from 0 to t (2^(y/10)) dt
> Is it possible to do it with Matlab ode solvers?
>
> Best regards
> Grzegorz

You integrand is  2^(y/10) but you are integrating w.r.t. ?

So teh integrand is constant?  So the integral is just

      2^(y/10) * Integral[ 1 , {0,t} ]

which is

      2^(y/10) * t

?

Can you clarify first, then will give you code.

--Nasser