Path: news.mathworks.com!not-for-mail
From: "Bruno Luong" <b.luong@fogale.findmycountry>
Newsgroups: comp.soft-sys.matlab
Subject: Re: max min problem
Date: Sun, 16 Oct 2011 21:49:10 +0000 (UTC)
Organization: FOGALE nanotech
Lines: 16
Message-ID: <j7fjgm$rs1$1@newscl01ah.mathworks.com>
References: <j7f7m1$nh0$1@newscl01ah.mathworks.com>
Reply-To: "Bruno Luong" <b.luong@fogale.findmycountry>
NNTP-Posting-Host: www-02-blr.mathworks.com
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: newscl01ah.mathworks.com 1318801750 28545 172.30.248.47 (16 Oct 2011 21:49:10 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Sun, 16 Oct 2011 21:49:10 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 390839
Xref: news.mathworks.com comp.soft-sys.matlab:746182

"Frank " <allinone_2003@yahoo.com.hk> wrote in message <j7f7m1$nh0$1@newscl01ah.mathworks.com>...
> Hello,
> 
> Let f(x) = min(|z_1^H x| , |z_2^H x|, ..., |z_M^H x|) where z_i and x are complex vectors, ^H denotes conjugate transpose and |a| means norm of a.
> 
> I want to calculate the following:
> 
> maximize_x f(x) 
> 
> How can I achieve this?

Very easy:

x = inf(1,n) % n is the dimension

Bruno