Path: news.mathworks.com!not-for-mail
From: <HIDDEN>
Newsgroups: comp.soft-sys.matlab
Subject: Re: volume of each tetrahedral
Date: Wed, 29 Feb 2012 19:10:26 +0000 (UTC)
Organization: The MathWorks, Inc.
Lines: 10
Message-ID: <jilt72$ft7$1@newscl01ah.mathworks.com>
References: <jilq70$57u$1@newscl01ah.mathworks.com>
Reply-To: <HIDDEN>
NNTP-Posting-Host: www-03-blr.mathworks.com
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: newscl01ah.mathworks.com 1330542626 16295 172.30.248.48 (29 Feb 2012 19:10:26 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Wed, 29 Feb 2012 19:10:26 +0000 (UTC)
X-Newsreader: MATLAB Central Newsreader 1187260
Xref: news.mathworks.com comp.soft-sys.matlab:759398

"Dave Brackett" wrote in message <jilq70$57u$1@newscl01ah.mathworks.com>...
> Hi, is there an easy and fast way to calculate the volume of each individual tetrahedral from a 3D DelaunayTri mesh? T= DelaunayTri(x,y,z)
> 
> Thanks in advance.
- - - - - - - -
  If P1, P2, P3, and P4 are each the three cartesian coordinates of one of a tetrahedron's four vertices, then its volume is:

 V = 1/6*abs(dot(P2-P1,cross(P3-P1,P4-P1)));

Roger Stafford