```Path: news.mathworks.com!not-for-mail
From: <HIDDEN>
Newsgroups: comp.soft-sys.matlab
Subject: Re: matrix multiplication with zero dimensions
Date: Mon, 7 Jan 2013 04:36:09 +0000 (UTC)
Organization: Xoran Technologies
Lines: 13
Message-ID: <kcdjbp\$46l\$1@newscl01ah.mathworks.com>
References: <kcd0g0\$34t\$1@newscl01ah.mathworks.com> <kcd1lg\$6u4\$1@newscl01ah.mathworks.com> <kcd527\$hou\$1@newscl01ah.mathworks.com> <kcdg4j\$n70\$1@newscl01ah.mathworks.com>
NNTP-Posting-Host: www-06-blr.mathworks.com
Content-Type: text/plain; charset=UTF-8; format=flowed
Content-Transfer-Encoding: 8bit
X-Trace: newscl01ah.mathworks.com 1357533369 4309 172.30.248.38 (7 Jan 2013 04:36:09 GMT)
X-Complaints-To: news@mathworks.com
NNTP-Posting-Date: Mon, 7 Jan 2013 04:36:09 +0000 (UTC)
Xref: news.mathworks.com comp.soft-sys.matlab:786052

"Roger Stafford" wrote in message <kcdg4j\$n70\$1@newscl01ah.mathworks.com>...
>
>   Think of it this way, Matt.  Consider the four multiplications:
>
>  M3 = ones(3,3)*ones(3,3);
>  M2 = ones(3,2)*ones(2,3);
>  M1 = ones(3,1)*ones(1,3);
>  M0 = ones(3,0)*ones(0,3);
>
> Each of the elements of 3 x 3 M3 is 3.  Each of the elements of 3 x 3 M2 is 2.  Each of the elements of 3 x 3 M1 is 1.  Therefore by extension of this trend M0 should have 3 x 3 elements and each of them should be 0.
=============

OK!
```