The **MATLAB Central Newsreader** pages will be retired soon. Please visit **MATLAB Answers** for questions and answers relating to MATLAB and Simulink. You will still be able to access the *comp.soft-sys.matlab* Usenet group using many other newsreader programs.

1st Code:

t = 0:dt:20;

for m=1:numel(t)

if t(m)==0

X(m)=20;

elseif t(m)>0 && t(m)<2

X(m)=20+35*t(m);

elseif t(m)>=2

X(m)=90;

end

end

2nd Code:

T(79)=X;

T(80)=X;

T(81)=X;

T(82)=X;

T(83)=X;

T(84)=X;

T(85)=X;

T(86)=X;

T(87)=X;

T(88)=X;

T(89)=X;

T(90)=X;

T(91)=X;

> Hi everyone, when I run the 1st Code and then type X is gives me 401 values for which X starts at 20 and rises to 90 and then stays at 90 from then on which is exactly what I'm after. When I run the 2nd Code however, instead of giving me for example that T(79) is then equal to X it gives me an error. Can anyone help? I think it's because T may already be a vector and then when I'm telling it T(79) is equal to something it's saying it can't be is that correct? If so is there a way I can get around this because I actually have T values from 1 to 91, 1 to 78 of which are formulas which work fine, but 79 to 91 have to change with time.

>

> 1st Code:

>

> t = 0:dt:20;

> for m=1:numel(t)

> if t(m)==0

> X(m)=20;

> elseif t(m)>0 && t(m)<2

> X(m)=20+35*t(m);

> elseif t(m)>=2

> X(m)=90;

> end

> end

>

> 2nd Code:

>

> T(79)=X;

> T(80)=X;

> T(81)=X;

> T(82)=X;

> T(83)=X;

> T(84)=X;

> T(85)=X;

> T(86)=X;

> T(87)=X;

> T(88)=X;

> T(89)=X;

> T(90)=X;

> T(91)=X;

In the example you gave, the variable dt is not set, which will effect the exact reason for the error. Tell us what dt is, and also copy and paste the output from the matlab command line when you run the code to show the exact error you get.

There is indeed a heap more coding above the cut-outs that I pasted, and a part of it in fact was dt=0.05

I'll post some more to be safe:

k = 230; % Thermal conductivity (W/m^2 degrees celsius)

rho = 2700; % Density of ceramic clay (kg/m^3)

c = 910; % Specific heat coefficient (J/kg degrees celsius)

h = 300; % Convective heat transfer coefficient (W/m^2 degrees celsius)

Tinf = 20; % Temperature on the exposed surface (degrees celsius)

dx = 0.005; % Step size in x-direction (m)

dy = 0.005; % Step size in y-direction (m)

DVcorners = (dx*dy)/4; % Volume of corner nodes

DVedge = (dx*dy)/2; % Volume of edge nodes

DVinternal = (dx*dy); % Volume of internal nodes

Zcorners = (rho*c*DVcorners); % Creating constants to save some repetition

Zedge = (rho*c*DVedge);

Zinternal = (rho*c*DVinternal);

Ax = dy/2; % Area at node

Ay = dx/2;

Ti = 20*ones(1,91)'; % Initial temperature at nodes

T0 = Ti;

dt = 0.05; % Time step (s)

% Creates the boundary condition for the bottom edge (nodes 79-91)

t = 0:dt:20;

for m=1:numel(t)

if t(m)==0

X(m)=20;

elseif t(m)>0 && t(m)<2

X(m)=20+35*t(m);

elseif t(m)>=2

X(m)=90;

end

end

% Calculates the temperature at each node over the specified time

ivals = 0:dt:20;

for i = 1:length(ivals)

T = Ti;

for j=1:numel(t)

T(79)=X(j);

T(80)=X(j);

T(81)=X(j);

T(82)=X(j);

T(83)=X(j);

T(84)=X(j);

T(85)=X(j);

T(86)=X(j);

T(87)=X(j);

T(88)=X(j);

T(89)=X(j);

T(90)=X(j);

T(91)=X(j);

end

Ti = T;

Tfinal(:,1) = T0;

Tfinal(:,i) = Ti;

It goes something like that. Again there is a little more info in my script that I haven't ncluded because I think is not required. When I run it, it runs fine, but it's saying that the values for T(79) all the way to T(91) are simply equal to 90. When really I want them to be a vector 401 time steps long so that for time step 1-401 T(79) will change from 20 to 90 degrees. Does that make sense? If not I'll simply paste my full code because there may be something in there.

Cheers

> Sorry Richard,

>

> There is indeed a heap more coding above the cut-outs that I pasted, and a part of it in fact was dt=0.05

>

> I'll post some more to be safe:

>

> k = 230; % Thermal conductivity (W/m^2 degrees celsius)

> rho = 2700; % Density of ceramic clay (kg/m^3)

> c = 910; % Specific heat coefficient (J/kg degrees celsius)

> h = 300; % Convective heat transfer coefficient (W/m^2 degrees celsius)

> Tinf = 20; % Temperature on the exposed surface (degrees celsius)

> dx = 0.005; % Step size in x-direction (m)

> dy = 0.005; % Step size in y-direction (m)

> DVcorners = (dx*dy)/4; % Volume of corner nodes

> DVedge = (dx*dy)/2; % Volume of edge nodes

> DVinternal = (dx*dy); % Volume of internal nodes

> Zcorners = (rho*c*DVcorners); % Creating constants to save some repetition

> Zedge = (rho*c*DVedge);

> Zinternal = (rho*c*DVinternal);

> Ax = dy/2; % Area at node

> Ay = dx/2;

> Ti = 20*ones(1,91)'; % Initial temperature at nodes

> T0 = Ti;

> dt = 0.05; % Time step (s)

>

> % Creates the boundary condition for the bottom edge (nodes 79-91)

> t = 0:dt:20;

> for m=1:numel(t)

> if t(m)==0

> X(m)=20;

> elseif t(m)>0 && t(m)<2

> X(m)=20+35*t(m);

> elseif t(m)>=2

> X(m)=90;

> end

> end

>

> % Calculates the temperature at each node over the specified time

> ivals = 0:dt:20;

> for i = 1:length(ivals)

> T = Ti;

>

> for j=1:numel(t)

> T(79)=X(j);

> T(80)=X(j);

> T(81)=X(j);

> T(82)=X(j);

> T(83)=X(j);

> T(84)=X(j);

> T(85)=X(j);

> T(86)=X(j);

> T(87)=X(j);

> T(88)=X(j);

> T(89)=X(j);

> T(90)=X(j);

> T(91)=X(j);

> end

> Ti = T;

> Tfinal(:,1) = T0;

> Tfinal(:,i) = Ti;

>

> It goes something like that. Again there is a little more info in my script that I haven't ncluded because I think is not required. When I run it, it runs fine, but it's saying that the values for T(79) all the way to T(91) are simply equal to 90. When really I want them to be a vector 401 time steps long so that for time step 1-401 T(79) will change from 20 to 90 degrees. Does that make sense? If not I'll simply paste my full code because there may be something in there.

>

> Cheers

First of all, I think you are missing an 'end' somewhere in the code posted.

Next, well, I may have misunderstood what you're asking, but T(79) can never be a vector. It is a single value in a vector. T(79, :) could be a row vector, or T(:,79) could be a column vector, but not T(79), this can be only one value. For example

Declare a 3x3 matrix

M = [1 2 3;

4 5 6;

7 8 9]

M =

1 2 3

4 5 6

7 8 9

M(1)

ans =

1

M(1,:)

ans =

1 2 3

M(:,1)

ans =

1

4

7

Declare a column vector similar to yours:

T = [1; 2; 3; 4; 5]

T =

1

2

3

4

5

T(1)

ans =

1

T(4)

ans =

4

In your code you have a loop like this:

for j=1:numel(t)

T(79)=X(j);

T(80)=X(j);

T(81)=X(j);

T(82)=X(j);

T(83)=X(j);

T(84)=X(j);

T(85)=X(j);

T(86)=X(j);

T(87)=X(j);

T(88)=X(j);

T(89)=X(j);

T(90)=X(j);

T(91)=X(j);

end

All this loop does is replace the single value in each of the points T(79), T(80), T(81) etc with another single value, the single value in the location X(j). This can be shown in the following similar example:

t = 1:5;

X = [10, 9, 8, 7, 6];

T = [0, 0];

for j=1:numel(t)

T(2)=X(j)

end

The output is:

T =

0 10

T =

0 9

T =

0 8

T =

0 7

T =

0 6

I'm guessing this is not want you want.

If you wish to solve differential equations numerically in MATLAB, I would suggest using the built-in ode solvers, look up ode45 for instance.

k = 230; % Thermal conductivity (W/m^2 degrees celsius)

rho = 2700; % Density of ceramic clay (kg/m^3)

c = 910; % Specific heat coefficient (J/kg degrees celsius)

h = 300; % Convective heat transfer coefficient (W/m^2 degrees celsius)

Tinf = 20; % Temperature on the exposed surface (degrees celsius)

dx = 0.005; % Step size in x-direction (m)

dy = 0.005; % Step size in y-direction (m)

DVcorners = (dx*dy)/4; % Volume of corner nodes

DVedge = (dx*dy)/2; % Volume of edge nodes

DVinternal = (dx*dy); % Volume of internal nodes

Zcorners = (rho*c*DVcorners); % Creating constants to save some repetition

Zedge = (rho*c*DVedge);

Zinternal = (rho*c*DVinternal);

Ax = dy/2; % Area at node

Ay = dx/2;

Ti = 20*ones(1,91)'; % Initial temperature at nodes

T0 = Ti;

dt = 0.05; % Time step (s)

% Creates the boundary condition for the bottom edge (nodes 79-91)

t = 0:dt:20;

for m=1:numel(t)

if t(m)==0

X(m)=20;

elseif t(m)>0 && t(m)<2

X(m)=20+35*t(m);

elseif t(m)>=2

X(m)=90;

end

end

% Calculates the temperature at each node over the specified time

ivals = 0:dt:20;

for i = 1:length(ivals)

T = Ti;

T(1) = (((k/2)*(Ti(14)-Ti(1)) + (k/2)*(Ti(2)-Ti(1)) + h*Ax*(Tinf-Ti(1)))*(dt/Zcorners)) + Ti(1);

T(2) = (((k/2)*(Ti(1)-Ti(2)) + k*(Ti(15)-Ti(2)) + (k/2)*(Ti(3)-Ti(2)) + h*Ax*(Tinf-Ti(2)))*(dt/Zedge)) + Ti(2);

T(3) = (((k/2)*(Ti(2)-Ti(3)) + k*(Ti(16)-Ti(3)) + (k/2)*(Ti(4)-Ti(3)) + h*Ax*(Tinf-Ti(3)))*(dt/Zedge)) + Ti(3);

T(4) = (((k/2)*(Ti(3)-Ti(4)) + k*(Ti(17)-Ti(4)) + (k/2)*(Ti(5)-Ti(4)) + h*Ax*(Tinf-Ti(4)))*(dt/Zedge)) + Ti(4);

T(5) = (((k/2)*(Ti(4)-Ti(5)) + k*(Ti(18)-Ti(5)) + (k/2)*(Ti(6)-Ti(5)) + h*Ax*(Tinf-Ti(5)))*(dt/Zedge)) + Ti(5);

T(6) = (((k/2)*(Ti(5)-Ti(6)) + k*(Ti(19)-Ti(6)) + (k/2)*(Ti(7)-Ti(6)) + h*Ax*(Tinf-Ti(6)))*(dt/Zedge)) + Ti(6);

T(7) = (((k/2)*(Ti(6)-Ti(7)) + k*(Ti(20)-Ti(7)) + (k/2)*(Ti(8)-Ti(7)) + h*Ax*(Tinf-Ti(7)))*(dt/Zedge)) + Ti(7);

T(8) = (((k/2)*(Ti(7)-Ti(8)) + k*(Ti(21)-Ti(8)) + (k/2)*(Ti(9)-Ti(8)) + h*Ax*(Tinf-Ti(8)))*(dt/Zedge)) + Ti(8);

T(9) = (((k/2)*(Ti(8)-Ti(9)) + k*(Ti(22)-Ti(9)) + (k/2)*(Ti(10)-Ti(9)) + h*Ax*(Tinf-Ti(9)))*(dt/Zedge)) + Ti(9);

T(10) = (((k/2)*(Ti(9)-Ti(10)) + k*(Ti(23)-Ti(10)) + (k/2)*(Ti(11)-Ti(10)) + h*Ax*(Tinf-Ti(10)))*(dt/Zedge)) + Ti(10);

T(11) = (((k/2)*(Ti(10)-Ti(11)) + k*(Ti(24)-Ti(11)) + (k/2)*(Ti(12)-Ti(11)) + h*Ax*(Tinf-Ti(11)))*(dt/Zedge)) + Ti(11);

T(12) = (((k/2)*(Ti(11)-Ti(12)) + k*(Ti(25)-Ti(12)) + (k/2)*(Ti(13)-Ti(12)) + h*Ax*(Tinf-Ti(12)))*(dt/Zedge)) + Ti(12);

T(13) = (((k/2)*(Ti(12)-Ti(13)) + (k/2)*(Ti(26)-Ti(13)) + h*Ay*(Tinf-Ti(13)) + h*Ax*(Tinf-Ti(13)))*(dt/Zcorners)) + Ti(13);

T(14) = (((k/2)*(Ti(27)-Ti(14)) + k*(Ti(15)-Ti(14)) + (k/2)*(Ti(1)-Ti(14)))*(dt/Zedge)) + Ti(14);

T(15) = ((k*(Ti(14)-Ti(15)) + k*(Ti(28)-Ti(15)) + k*(Ti(16)-Ti(15)) + k*(Ti(2)-Ti(15)))*(dt/Zinternal)) + Ti(15);

T(16) = ((k*(Ti(15)-Ti(16)) + k*(Ti(29)-Ti(16)) + k*(Ti(17)-Ti(16)) + k*(Ti(3)-Ti(16)))*(dt/Zinternal)) + Ti(16);

T(17) = ((k*(Ti(16)-Ti(17)) + k*(Ti(30)-Ti(17)) + k*(Ti(18)-Ti(17)) + k*(Ti(4)-Ti(17)))*(dt/Zinternal)) + Ti(17);

T(18) = ((k*(Ti(17)-Ti(18)) + k*(Ti(31)-Ti(18)) + k*(Ti(19)-Ti(18)) + k*(Ti(5)-Ti(18)))*(dt/Zinternal)) + Ti(18);

T(19) = ((k*(Ti(18)-Ti(19)) + k*(Ti(32)-Ti(19)) + k*(Ti(20)-Ti(19)) + k*(Ti(6)-Ti(19)))*(dt/Zinternal)) + Ti(19);

T(20) = ((k*(Ti(19)-Ti(20)) + k*(Ti(33)-Ti(20)) + k*(Ti(21)-Ti(20)) + k*(Ti(7)-Ti(20)))*(dt/Zinternal)) + Ti(20);

T(21) = ((k*(Ti(20)-Ti(21)) + k*(Ti(34)-Ti(21)) + k*(Ti(22)-Ti(21)) + k*(Ti(8)-Ti(21)))*(dt/Zinternal)) + Ti(21);

T(22) = ((k*(Ti(21)-Ti(22)) + k*(Ti(35)-Ti(22)) + k*(Ti(23)-Ti(22)) + k*(Ti(9)-Ti(22)))*(dt/Zinternal)) + Ti(22);

T(23) = ((k*(Ti(22)-Ti(23)) + k*(Ti(36)-Ti(23)) + k*(Ti(24)-Ti(23)) + k*(Ti(10)-Ti(23)))*(dt/Zinternal)) + Ti(23);

T(24) = ((k*(Ti(23)-Ti(24)) + k*(Ti(37)-Ti(24)) + k*(Ti(25)-Ti(24)) + k*(Ti(11)-Ti(24)))*(dt/Zinternal)) + Ti(24);

T(25) = ((k*(Ti(24)-Ti(25)) + k*(Ti(38)-Ti(25)) + k*(Ti(26)-Ti(25)) + k*(Ti(12)-Ti(25)))*(dt/Zinternal)) + Ti(25);

T(26) = ((k*(Ti(25)-Ti(26)) + (k/2)*(Ti(39)-Ti(26)) + h*Ay*(Tinf-Ti(26)) + (k/2)*(Ti(13)-Ti(26)))*(dt/Zedge)) + Ti(26);

T(27) = (((k/2)*(Ti(40)-Ti(27)) + k*(Ti(28)-Ti(27)) + (k/2)*(Ti(14)-Ti(27)))*(dt/Zedge)) + Ti(27);

T(28) = ((k*(Ti(27)-Ti(28)) + k*(Ti(41)-Ti(28)) + k*(Ti(29)-Ti(28)) + k*(Ti(15)-Ti(28)))*(dt/Zinternal)) + Ti(28);

T(29) = ((k*(Ti(28)-Ti(29)) + k*(Ti(42)-Ti(29)) + k*(Ti(30)-Ti(29)) + k*(Ti(16)-Ti(29)))*(dt/Zinternal)) + Ti(29);

T(30) = ((k*(Ti(29)-Ti(30)) + k*(Ti(43)-Ti(30)) + k*(Ti(31)-Ti(30)) + k*(Ti(17)-Ti(30)))*(dt/Zinternal)) + Ti(30);

T(31) = ((k*(Ti(30)-Ti(31)) + k*(Ti(44)-Ti(31)) + k*(Ti(32)-Ti(31)) + k*(Ti(18)-Ti(31)))*(dt/Zinternal)) + Ti(31);

T(32) = ((k*(Ti(31)-Ti(32)) + k*(Ti(45)-Ti(32)) + k*(Ti(33)-Ti(32)) + k*(Ti(19)-Ti(32)))*(dt/Zinternal)) + Ti(32);

T(33) = ((k*(Ti(32)-Ti(33)) + k*(Ti(46)-Ti(33)) + k*(Ti(34)-Ti(33)) + k*(Ti(20)-Ti(33)))*(dt/Zinternal)) + Ti(33);

T(34) = ((k*(Ti(33)-Ti(34)) + k*(Ti(47)-Ti(34)) + k*(Ti(35)-Ti(34)) + k*(Ti(21)-Ti(34)))*(dt/Zinternal)) + Ti(34);

T(35) = ((k*(Ti(34)-Ti(35)) + k*(Ti(48)-Ti(35)) + k*(Ti(36)-Ti(35)) + k*(Ti(22)-Ti(35)))*(dt/Zinternal)) + Ti(35);

T(36) = ((k*(Ti(35)-Ti(36)) + k*(Ti(49)-Ti(36)) + k*(Ti(37)-Ti(36)) + k*(Ti(23)-Ti(36)))*(dt/Zinternal)) + Ti(36);

T(37) = ((k*(Ti(36)-Ti(37)) + k*(Ti(50)-Ti(37)) + k*(Ti(38)-Ti(37)) + k*(Ti(24)-Ti(37)))*(dt/Zinternal)) + Ti(37);

T(38) = ((k*(Ti(37)-Ti(38)) + k*(Ti(51)-Ti(38)) + k*(Ti(39)-Ti(38)) + k*(Ti(25)-Ti(38)))*(dt/Zinternal)) + Ti(38);

T(39) = ((k*(Ti(38)-Ti(39)) + (k/2)*(Ti(52)-Ti(39)) + h*Ay*(Tinf-Ti(39)) + (k/2)*(Ti(26)-Ti(39)))*(dt/Zedge)) + Ti(39);

T(40) = (((k/2)*(Ti(53)-Ti(40)) + k*(Ti(41)-Ti(40)) + (k/2)*(Ti(27)-Ti(40)))*(dt/Zedge)) + Ti(40);

T(41) = ((k*(Ti(40)-Ti(41)) + k*(Ti(54)-Ti(41)) + k*(Ti(42)-Ti(41)) + k*(Ti(28)-Ti(41)))*(dt/Zinternal)) + Ti(41);

T(42) = ((k*(Ti(41)-Ti(42)) + k*(Ti(55)-Ti(42)) + k*(Ti(43)-Ti(42)) + k*(Ti(29)-Ti(42)))*(dt/Zinternal)) + Ti(42);

T(43) = ((k*(Ti(42)-Ti(43)) + k*(Ti(56)-Ti(43)) + k*(Ti(44)-Ti(43)) + k*(Ti(30)-Ti(43)))*(dt/Zinternal)) + Ti(43);

T(44) = ((k*(Ti(43)-Ti(44)) + k*(Ti(57)-Ti(44)) + k*(Ti(45)-Ti(44)) + k*(Ti(31)-Ti(44)))*(dt/Zinternal)) + Ti(44);

T(45) = ((k*(Ti(44)-Ti(45)) + k*(Ti(58)-Ti(45)) + k*(Ti(46)-Ti(45)) + k*(Ti(32)-Ti(45)))*(dt/Zinternal)) + Ti(45);

T(46) = ((k*(Ti(45)-Ti(46)) + k*(Ti(59)-Ti(46)) + k*(Ti(47)-Ti(46)) + k*(Ti(33)-Ti(46)))*(dt/Zinternal)) + Ti(46);

T(47) = ((k*(Ti(46)-Ti(47)) + k*(Ti(60)-Ti(47)) + k*(Ti(48)-Ti(47)) + k*(Ti(34)-Ti(47)))*(dt/Zinternal)) + Ti(47);

T(48) = ((k*(Ti(47)-Ti(48)) + k*(Ti(61)-Ti(48)) + k*(Ti(49)-Ti(48)) + k*(Ti(35)-Ti(48)))*(dt/Zinternal)) + Ti(48);

T(49) = ((k*(Ti(48)-Ti(49)) + k*(Ti(62)-Ti(49)) + k*(Ti(50)-Ti(49)) + k*(Ti(36)-Ti(49)))*(dt/Zinternal)) + Ti(49);

T(50) = ((k*(Ti(49)-Ti(50)) + k*(Ti(63)-Ti(50)) + k*(Ti(51)-Ti(50)) + k*(Ti(37)-Ti(50)))*(dt/Zinternal)) + Ti(50);

T(51) = ((k*(Ti(50)-Ti(51)) + k*(Ti(64)-Ti(51)) + k*(Ti(52)-Ti(51)) + k*(Ti(38)-Ti(51)))*(dt/Zinternal)) + Ti(51);

T(52) = ((k*(Ti(51)-Ti(52)) + (k/2)*(Ti(65)-Ti(52)) + h*Ay*(Tinf-Ti(52)) + (k/2)*(Ti(39)-Ti(52)))*(dt/Zedge)) + Ti(52);

T(53) = (((k/2)*(Ti(66)-Ti(53)) + k*(Ti(54)-Ti(53)) + (k/2)*(Ti(40)-Ti(53)))*(dt/Zedge)) + Ti(53);

T(54) = ((k*(Ti(53)-Ti(54)) + k*(Ti(67)-Ti(54)) + k*(Ti(55)-Ti(54)) + k*(Ti(41)-Ti(54)))*(dt/Zinternal)) + Ti(54);

T(55) = ((k*(Ti(54)-Ti(55)) + k*(Ti(68)-Ti(55)) + k*(Ti(56)-Ti(55)) + k*(Ti(42)-Ti(55)))*(dt/Zinternal)) + Ti(55);

T(56) = ((k*(Ti(55)-Ti(56)) + k*(Ti(69)-Ti(56)) + k*(Ti(57)-Ti(56)) + k*(Ti(43)-Ti(56)))*(dt/Zinternal)) + Ti(56);

T(57) = ((k*(Ti(56)-Ti(57)) + k*(Ti(70)-Ti(57)) + k*(Ti(58)-Ti(57)) + k*(Ti(44)-Ti(57)))*(dt/Zinternal)) + Ti(57);

T(58) = ((k*(Ti(57)-Ti(58)) + k*(Ti(71)-Ti(58)) + k*(Ti(59)-Ti(58)) + k*(Ti(45)-Ti(58)))*(dt/Zinternal)) + Ti(58);

T(59) = ((k*(Ti(58)-Ti(59)) + k*(Ti(72)-Ti(59)) + k*(Ti(60)-Ti(59)) + k*(Ti(46)-Ti(59)))*(dt/Zinternal)) + Ti(59);

T(60) = ((k*(Ti(59)-Ti(60)) + k*(Ti(73)-Ti(60)) + k*(Ti(61)-Ti(60)) + k*(Ti(47)-Ti(60)))*(dt/Zinternal)) + Ti(60);

T(61) = ((k*(Ti(60)-Ti(61)) + k*(Ti(74)-Ti(61)) + k*(Ti(62)-Ti(61)) + k*(Ti(48)-Ti(61)))*(dt/Zinternal)) + Ti(61);

T(62) = ((k*(Ti(61)-Ti(62)) + k*(Ti(75)-Ti(62)) + k*(Ti(63)-Ti(62)) + k*(Ti(49)-Ti(62)))*(dt/Zinternal)) + Ti(62);

T(63) = ((k*(Ti(62)-Ti(63)) + k*(Ti(76)-Ti(63)) + k*(Ti(64)-Ti(63)) + k*(Ti(50)-Ti(63)))*(dt/Zinternal)) + Ti(63);

T(64) = ((k*(Ti(63)-Ti(64)) + k*(Ti(77)-Ti(64)) + k*(Ti(65)-Ti(64)) + k*(Ti(51)-Ti(64)))*(dt/Zinternal)) + Ti(64);

T(65) = ((k*(Ti(64)-Ti(65)) + (k/2)*(Ti(78)-Ti(65)) + h*Ay*(Tinf-Ti(65)) + (k/2)*(Ti(52)-Ti(65)))*(dt/Zedge)) + Ti(65);

T(66) = (((k/2)*(Ti(79)-Ti(66)) + k*(Ti(67)-Ti(66)) + (k/2)*(Ti(53)-Ti(66)))*(dt/Zedge)) + Ti(66);

T(67) = ((k*(Ti(66)-Ti(67)) + k*(Ti(80)-Ti(67)) + k*(Ti(68)-Ti(67)) + k*(Ti(54)-Ti(67)))*(dt/Zinternal)) + Ti(67);

T(68) = ((k*(Ti(67)-Ti(68)) + k*(Ti(81)-Ti(68)) + k*(Ti(69)-Ti(68)) + k*(Ti(55)-Ti(68)))*(dt/Zinternal)) + Ti(68);

T(69) = ((k*(Ti(68)-Ti(69)) + k*(Ti(82)-Ti(69)) + k*(Ti(70)-Ti(69)) + k*(Ti(56)-Ti(69)))*(dt/Zinternal)) + Ti(69);

T(70) = ((k*(Ti(69)-Ti(70)) + k*(Ti(83)-Ti(70)) + k*(Ti(71)-Ti(70)) + k*(Ti(57)-Ti(70)))*(dt/Zinternal)) + Ti(70);

T(71) = ((k*(Ti(70)-Ti(71)) + k*(Ti(84)-Ti(71)) + k*(Ti(72)-Ti(71)) + k*(Ti(58)-Ti(71)))*(dt/Zinternal)) + Ti(71);

T(72) = ((k*(Ti(71)-Ti(72)) + k*(Ti(85)-Ti(72)) + k*(Ti(73)-Ti(72)) + k*(Ti(59)-Ti(72)))*(dt/Zinternal)) + Ti(72);

T(73) = ((k*(Ti(72)-Ti(73)) + k*(Ti(86)-Ti(73)) + k*(Ti(74)-Ti(73)) + k*(Ti(60)-Ti(73)))*(dt/Zinternal)) + Ti(73);

T(74) = ((k*(Ti(73)-Ti(74)) + k*(Ti(87)-Ti(74)) + k*(Ti(75)-Ti(74)) + k*(Ti(61)-Ti(74)))*(dt/Zinternal)) + Ti(74);

T(75) = ((k*(Ti(74)-Ti(75)) + k*(Ti(88)-Ti(75)) + k*(Ti(76)-Ti(75)) + k*(Ti(62)-Ti(75)))*(dt/Zinternal)) + Ti(75);

T(76) = ((k*(Ti(75)-Ti(76)) + k*(Ti(89)-Ti(76)) + k*(Ti(77)-Ti(76)) + k*(Ti(63)-Ti(76)))*(dt/Zinternal)) + Ti(76);

T(77) = ((k*(Ti(76)-Ti(77)) + k*(Ti(90)-Ti(77)) + k*(Ti(78)-Ti(77)) + k*(Ti(64)-Ti(77)))*(dt/Zinternal)) + Ti(77);

T(78) = ((k*(Ti(77)-Ti(78)) + (k/2)*(Ti(91)-Ti(78)) + h*Ay*(Tinf-Ti(78)) + (k/2)*(Ti(65)-Ti(78)))*(dt/Zedge)) + Ti(78);

for j=1:numel(t)

T(79)=X(j);

T(80)=X(j);

T(81)=X(j);

T(82)=X(j);

T(83)=X(j);

T(84)=X(j);

T(85)=X(j);

T(86)=X(j);

T(87)=X(j);

T(88)=X(j);

T(89)=X(j);

T(90)=X(j);

T(91)=X(j);

end

Ti = T;

Tfinal(:,1) = T0;

Tfinal(:,i) = Ti;

end

> ivals = 0:dt:20;

> for i = 1:length(ivals)

> T = Ti;

> T(1) = (((k/2)*(Ti(14)-Ti(1)) + (k/2)*(Ti(2)-Ti(1)) + h*Ax*(Tinf-Ti(1)))*(dt/Zcorners)) + Ti(1);

> T(2) = (((k/2)*(Ti(1)-Ti(2)) + k*(Ti(15)-Ti(2)) + (k/2)*(Ti(3)-Ti(2)) + h*Ax*(Tinf-Ti(2)))*(dt/Zedge)) + Ti(2);

...<snip>...

> T(78) = ((k*(Ti(77)-Ti(78)) + (k/2)*(Ti(91)-Ti(78)) + h*Ay*(Tinf-Ti(78)) + (k/2)*(Ti(65)-Ti(78)))*(dt/Zedge)) + Ti(78);

> for j=1:numel(t)

> T(79)=X(j);

> T(91)=X(j);

> end

> Ti = T;

> Tfinal(:,1) = T0;

> Tfinal(:,i) = Ti;

> end

Your code is not making any use of Matlab's true capabilities, and as such it will be very difficult to track down errors. Consider this example

for j=1:numel(t)

T(79)=X(j);

T(80)=X(j);

...

T(91)=X(j);

end

This can be condensed to

for j = 1:numel(t)

T(79:91) = X(j);

end

But it is clear that T is being overwritten each cycle through the loop so the only value of j which matters here is the last one, therefore this is equivalent to

T(79:91) = X(numel(t));

This is undoubtedly NOT what you want.

With proper use of indexing you could reduce most of your script to just a few lines, then you will probably catch the errors.

Hth,

Darren

> It still says they're simply 90 degrees for the duration, but I want them to start at 20 and graduate to 90. Any suggestions?

Try replacing

for j=1:numel(t)

T(79)=X(j);

T(80)=X(j);

T(81)=X(j);

T(82)=X(j);

T(83)=X(j);

T(84)=X(j);

T(85)=X(j);

T(86)=X(j);

T(87)=X(j);

T(88)=X(j);

T(89)=X(j);

T(90)=X(j);

T(91)=X(j);

end

with

T(79:91) = X(i);

Hth,

Darren

You can think of your watch list as threads that you have bookmarked.

You can add tags, authors, threads, and even search results to your watch list. This way you can easily keep track of topics that you're interested in. To view your watch list, click on the "My Newsreader" link.

To add items to your watch list, click the "add to watch list" link at the bottom of any page.

To add search criteria to your watch list, search for the desired term in the search box. Click on the "Add this search to my watch list" link on the search results page.

You can also add a tag to your watch list by searching for the tag with the directive "tag:tag_name" where tag_name is the name of the tag you would like to watch.

To add an author to your watch list, go to the author's profile page and click on the "Add this author to my watch list" link at the top of the page. You can also add an author to your watch list by going to a thread that the author has posted to and clicking on the "Add this author to my watch list" link. You will be notified whenever the author makes a post.

To add a thread to your watch list, go to the thread page and click the "Add this thread to my watch list" link at the top of the page.

*No tags are associated with this thread.*

A tag is like a keyword or category label associated with each thread. Tags make it easier for you to find threads of interest.

Anyone can tag a thread. Tags are public and visible to everyone.

Got questions?

Get answers.

MATLAB and Simulink resources for Arduino, LEGO, and Raspberry Pi test

Learn moreDiscover what MATLAB ^{®} can do for your career.

Opportunities for recent engineering grads.

Apply TodayThe newsgroups are a worldwide forum that is open to everyone. Newsgroups are used to discuss a huge range of topics, make announcements, and trade files.

Discussions are threaded, or grouped in a way that allows you to read a posted message and all of its replies in chronological order. This makes it easy to follow the thread of the conversation, and to see what’s already been said before you post your own reply or make a new posting.

Newsgroup content is distributed by servers hosted by various organizations on the Internet. Messages are exchanged and managed using open-standard protocols. No single entity “owns” the newsgroups.

There are thousands of newsgroups, each addressing a single topic or area of interest. The MATLAB Central Newsreader posts and displays messages in the comp.soft-sys.matlab newsgroup.

**MATLAB Central**

You can use the integrated newsreader at the MATLAB Central website to read and post messages in this newsgroup. MATLAB Central is hosted by MathWorks.

Messages posted through the MATLAB Central Newsreader are seen by everyone using the newsgroups, regardless of how they access the newsgroups. There are several advantages to using MATLAB Central.

**One Account**

Your MATLAB Central account is tied to your MathWorks Account for easy access.

**Use the Email Address of Your Choice**

The MATLAB Central Newsreader allows you to define an alternative email address as your posting address, avoiding clutter in your primary mailbox and reducing spam.

**Spam Control**

Most newsgroup spam is filtered out by the MATLAB Central Newsreader.

**Tagging**

Messages can be tagged with a relevant label by any signed-in user. Tags can be used as keywords to find particular files of interest, or as a way to categorize your bookmarked postings. You may choose to allow others to view your tags, and you can view or search others’ tags as well as those of the community at large. Tagging provides a way to see both the big trends and the smaller, more obscure ideas and applications.

**Watch lists**

Setting up watch lists allows you to be notified of updates made to postings selected by author, thread, or any search variable. Your watch list notifications can be sent by email (daily digest or immediate), displayed in My Newsreader, or sent via RSS feed.

- Use a newsreader through your school, employer, or internet service provider
- Pay for newsgroup access from a commercial provider
- Use Google Groups
- Mathforum.org provides a newsreader with access to the comp.soft sys.matlab newsgroup
- Run your own server. For typical instructions, see: http://www.slyck.com/ng.php?page=2

You can also select a location from the following list:

- Canada (English)
- United States (English)

- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)

- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)