Optimization Toolbox 

Optimization techniques are used to find a set of design parameters that give the best possible result. There are two key components in an optimization problem:
The objective function calculates the desired quantity to be minimized or maximized. Constraints can be added that limit the possible values for the design parameters.
Mathematical Modeling with Optimization, Part 1
8:51
Transform a problem description into a mathematical program that can be solved using optimization, using a steam and electric power plant example.
Mathematical Modeling with Optimization, Part 2
10:47
Solve a linear program using Optimization Toolbox™ solvers, using a steam and electric power plant example.
You can access Optimization Toolbox functions and solver options programmatically, or with the Optimization app.
The Optimization app simplifies common optimization tasks. It enables you to:
Introduction to Optimization Graphical User Interface
6:08
Set up and run optimization problems and visualize intermediate and final results.
Optimization Toolbox contains different solvers for different types of objectives and constraints. The Optimization Decision Table helps you choose the best solver for your problem.
Solver options enable you to tune or modify the optimization process and visualize solver progress. Setting options can be done programmatically or with the Optimization app.
Setting Options for Optimizations
4:48
Set options with optimoptions in Optimization Toolbox ^{TM} to tune solvers and monitor optimization progress.
Optimization Toolbox provides widely used optimization algorithms for solving nonlinear programming problems in MATLAB. The toolbox includes solvers for unconstrained and constrained nonlinear optimization and solvers for leastsquares optimization.
Optimization Toolbox uses three algorithms to solve unconstrained nonlinear minimization problems:
Constrained nonlinear optimization problems are composed of linear or nonlinear objective functions and may be subject to linear and nonlinear constraints. Optimization Toolbox uses four algorithms to solve these problems:
The interior point and trustregion reflective algorithms enable you to estimate Hessian matrices using different approaches.
For the interior point algorithm, you can estimate Hessian matrices using:
For the trustregion reflective algorithm, you can use:
Additionally, the interior point and trustregion reflective algorithms enable you to calculate Hessiantimesvector products in a function without having to form the Hessian matrix explicitly.
Optimization Toolbox can solve largescale linear and quadratic programming problems.
Linear programming problems involve minimizing or maximizing a linear objective function subject to bounds, linear equality, and inequality constraints. Linear programming is used in finance, energy, operations research, and other applications where relationships between variables can be expressed linearly.
Optimization Toolbox includes three algorithms used to solve linear programming problems:
Quadratic programming problems involve minimizing a multivariate quadratic function subject to bounds, linear equality, and inequality constraints. Quadratic programming is used for portfolio optimization in finance, power generation optimization for electrical utilities, design optimization in engineering, and other applications.
Optimization Toolbox includes three algorithms for solving quadratic programs:
Optimization in MATLAB: An Introduction to Quadratic Programming
36:35
In this webinar, you will learn how MATLAB can be used to solve optimization problems using an example quadratic optimization problem and the symbolic math tools in MATLAB.
Both the interiorpointconvex and trustregionreflective algorithms are large scale, meaning they can handle large, sparse problems. Furthermore, the interiorpointconvex algorithm has optimized internal linear algebra routines and a new presolve module that can improve speed, numerical stability, and the detection of infeasibility.
Mixedinteger linear programming expands the linear programming problem with the additional constraint that some or all of the variables in the optimal solution must be integers.
For some optimization problems, the variables should not take on fractional values. For instance, if a variable represents the number of stock shares to purchase, it should take on only integer values. Similarly, if a variable represents the on/off state of a generator, it should take on only binary values (0 or 1). The mixedinteger linear programming problem allows this behavior to be modeled by adding the constraint that these variables should take on only integers, or whole numbers, in the optimal solution.
MixedInteger Linear Programming in MATLAB
34:08
Learn how to use the new optimization solver for mixedinteger linear programming in Release 2014a. This new solver enables you to solve optimization problems in which some or all of the variables are constrained to take on integer values.
Optimization Toolbox solves mixedinteger linear programming problems using an algorithm that:
You can use Optimization Toolbox solvers with MATLAB Compiler™ to create decision support tools that can be shared with users who do not have MATLAB. These standalone applications can be deployed royaltyfree to an unlimited number of end users. You can also integrate MATLAB optimization algorithms with other languages, such as Java® and .NET, using MATLAB Builder™ products.
Multiobjective optimization is concerned with the minimization of multiple objective functions that are subject to a set of constraints. Optimization Toolbox provides functions for solving two formulations of multiobjective optimization problems:
Optimization Toolbox transforms both types of multiobjective problems into standard constrained optimization problems and then solves them using an activeset approach.
Global Optimization Toolbox provides an additional multiobjective solver for nonsmooth problems.
Optimization Toolbox can solve linear and nonlinear leastsquares problems, data fitting problems, and nonlinear equations.
The toolbox uses two algorithms for solving constrained linear leastsquares problems:
The toolbox uses two algorithms for solving nonlinear leastsquares problems:
The toolbox provides a specialized interface for data fitting problems in which you want to find the member of a family of nonlinear functions that best fits a set of data points. The toolbox uses the same algorithms for data fitting problems that it uses for nonlinear leastsquares problems.
Optimization Toolbox implements a dogleg trustregion algorithm for solving a system of nonlinear equations where there are as many equations as unknowns. The toolbox can also solve this problem using the trustregion reflective and LevenbergMarquardt algorithms.
Optimization Toolbox solvers for nonlinear problems use gradientbased methods for minimizing or maximizing an objective. Information about the gradient of the objective function can be either estimated by the solver using finite differences, or supplied to the solver by the user.
Optimization Toolbox can be used with Parallel Computing Toolbox to solve problems that benefit from parallel computation. You can use parallel computing to decrease time to solution by enabling builtin parallel computing support or by defining a custom parallel computing implementation of an optimization problem.
Builtin support for parallel computing in Optimization Toolbox enables you to accelerate the gradient estimation step in select solvers for constrained nonlinear optimization problems and for multiobjective goal attainment and minimax problems.
You can customize a parallel computing implementation by explicitly defining the optimization problem to use parallel computing functionality. You can define either an objective function or a constraint function to use parallel computing, enabling you to decrease the time required to evaluate the objective or constraint.
Speeding Up Optimization Problems Using Parallel Computing
55:41
In this webinar, we will use two case studies to demonstrate how you can use parallel computing to speed up singlelevel and multilevel optimization problems in MATLAB.
Optimization Toolbox solvers minimize nonlinear functions by estimating the partial derivatives of the objective function using finite differences. Alternatively, you can define functions that calculate the values of the partial derivatives, significantly reducing the overhead of the derivative estimation step.
Calculating partial derivatives of an objective function can be a tedious task. By expressing the problem symbolically using Symbolic Math Toolbox™, you can use builtin functions for automatically calculating objective function partial derivatives. MATLAB code can then be generated for use with Optimization Toolbox solvers.