Hybrid Beamforming for 5G Applications

Ganesan Thiagarajan, Ph.D., C.T.O., MMRFIC Technology Private Limited, Bangalore, INDIA

Outline

- 5G NR FR2 Requirements
- Hybrid Beamformer
- Initial access Beam selection for PBCH Tx and Rx
- Tracking Beam selection for CSI-RS (PDSCH) and SRS
- Concluding Remarks

MIMO Evolution in 3GPP

5G FR2 Requirements

- Massive MIMO in order to compensate the additional pathloss in mm-wave bands
 - E.g., 20 dB more pathloss in 28 GHz compared to 2.8 GHz
 - Requires multiple antennas at the gNB and UE
 - Limited Tx power from UE demands more Tx chains
 - 3-D beamforming to increase spectral efficiency
- Channel model in mm-wave band is mostly LOS with some multipath components
 - Channel richness is not enough for MU-MIMO
 - But provides large diversity to cater to fading and pathloss

Need for Beamforming in mm-wave

- In lower frequencies, a single beam can be used to provide wide coverage
- In higher frequencies, multiple beams can be used to extend coverage

Beamformer Complexity

- Multiple Tx and Rx chains demand increased hardware complexity and power consumption
 - 1 RF chain for each Tx and Rx antenna
 - Analog beamformers (ABF) can replace digital beamformers (DBF)
 - Has reduced flexibility and less resolution (phase shifter precision)
 - DBF offers the best performance and flexibility, but requires 1 RF chain for each antenna
 - Hybrid beamformers offer trade off between complexity and performance
- Hybrid beamformers have both ABF and DBF, but with reduced dimensions

Hybrid Beamformer Architectures

References:

- 1. Irfan Ahmed et al, "A Survey on Hybrid Beamforming Techniques in 5G: Architecture and System Model Perspectives", IEEE COMMUNICATIONS SURVEYS and TUTORIALS, 4Q 2018.
- 2. Marco Giordani et al, "A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies", IEEE COMMUNICATIONS SURVEYS and TUTORIALS, 1Q 2019.

technology pvi

Beamforming: Design Steps

- Design the right type of antenna array which suits the product
- Design the hybrid beamformer which suits the application
- Design the Digital Tx beamformer and Rx beam-combiner which suits the analog beamformer

Step 1. Building Hybrid Arrays in MATLAB

- Standard Arrays: ULA, URA, Replicated Subarray, etc.
- Custom built arrays can be used to create the custom MIMO channel model

```
myArray = phased.ULA;
myArray.NumElements = 4;
myArray.ElementSpacing = 0.4*lambda;
%% Construct a 2-by-1 replicated subarray.
myRepArray = phased.ReplicatedSubarray;
myRepArray.Subarray = myArray;
myRepArray.Layout = 'Rectangular';
myRepArray.GridSize = [2 1];
myRepArray.GridSpacing = 'Auto';
myRepArray.SubarraySteering = 'Time';
%% Steer the array to 30 degrees azimuth and zero degrees elevation.
anq = [30;0];
mySV = phased.SteeringVector;
mySV.SensorArray = myRepArray;
mySV.PropagationSpeed = c;
```


Step 2: 5G- Initial Access – Example

- Downlink PBCH transmission from gNB is repeated several times (SSBurst)
- For each SSBurst, different Tx beam (antenna weight) is used
 - Mobile picks the best beam index which gives good SNR
- For each beam index, a CSI-RS is transmitted
 - Mobile can estimate the effective channel for that beam
 - Mobile reports the CSI readings to BS, for keeping track of the beam
- For each beam position, RACH window is scheduled
- Mobile sends PRACH request in the beam number it had selected
 - Successful decoding of PRACH and acknowledgement ensures gNB knows the correct beam index for each mobile during initial access

Initial Access – Simulation Results(1)

technology pyt lta

- 16 Tx antennas with 4 RF chains
- 4 Rx antennas with 2 or 4 RF chains
- TDL-C channel with 20 nsec delay spread and 30 kmph UE movement

- 16 Orthogonal wts. are used in gNB
- 4 Orthogonal wts are used in UE followed by ABF summing.
- ABF weights are quantized to 6 bits (only phase part)
- LS (DBF) weights are computed from the PBCH DMRS signals (after ABF combining is done)
- DBF is computed only when CRC pass
- DBF is applied on the next SS Burst only if CRC pass for last one
- Estimated DBF weights are not optimal at low SNRs

M M technology pvt ltd

Initial Access – Simulation Results(2)

• PBCH Decoder performance at -2 dB SNR

No.	Parameter	4 Ch DBF	2 Ch ABF + 2 Ch DBF	4 Ch Selection Diversity	2 Ch ABF + Selection Diversity
1	BLER	0.054	0.015	0.005	0.005
2	BER	0.162	0.045	2e-4	1.9e-4

• MATLAB functions used:

No.	Function	Remark
1	hSSBurst()	Generates 5G NR SSBursts as per the standard configuration
2	hOFDMModulate()	Generates OFDM waveform as per the numerology and bandwidth
3	Scatteringchanmtx()	Channel matrix generation given the Tx and Rx antenna positions
4	nrChannelEstimate()	Channl estimation from DMRS signals
5	nrPBCHDecode()	PBCH decoder (including the Polarcode decoder)

Step 3: 5G-Digital Beamformer Design

- Given the Analog beam weights are chosen both at gNB and UE, resolve the digital beam using UE specific CSI
 - Assuming that we have chosen a set of orthogonal weights as analog beam weights
 - Transmit different set of signals weighed by another set of orthogonal digital weights. That is, choose W_B and F_B , given that W_R and F_R are chosen already, such that $rank(W_B^H W_R^H H F_R F_B) > \#Rx$ chains

$$\tilde{\mathbf{y}} = \mathbf{W}_B^H \mathbf{W}_R^H \mathbf{H} \mathbf{F}_R \mathbf{F}_B \mathbf{s} + \mathbf{W}_B^H \mathbf{W}_R^H \mathbf{n},$$

- And choose the one which gives best SNR for the UE specific CSI

5G- Fine Beam Selection Example

Source: Marco Giordani et al, "A Tutorial on Beam Management for 3GPP NR at mmWave Frequencies", IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 21, NO. 1, 2019

Concluding Remarks

- MATLAB 5G toolbox enables quick exploration of various hybrid beamformer architectures as well as their performance comparison
- 5G toolbox support all downlink traffic and control channels and majority of uplink channels
- Both NR1 and NR2 numerologies are supported
- Variety of antenna and sub-array design including custom element placement and type selection is possible
- Channel model both standard types (TDL,CDL) as well as custom scattering matrices can be easily incorporated in the simulation study

Questions?

