

Page 1 of 6

7/20/2015

2017-01-0107

Creating 3D Virtual Driving Environments for Simulation-Aided Development of

Autonomous Driving and Active Safety

Arvind Jayaraman, Ashley Micks, Ethan Gross
MathWorks, Ford Motor Company

Abstract

Recreating traffic scenarios for testing autonomous driving in the real
world requires significant time, resources and expense, and can
present a safety risk if hazardous scenarios are tested. Using a 3D
virtual environment to enable testing of many of these traffic
scenarios on the desktop or cluster significantly reduces the amount
of required road tests. In order to facilitate the development of
perception and control algorithms for level 4 autonomy, a shared
memory interface between MATLAB, Simulink, and Unreal Engine
4 can send information (such as vehicle control signals) back to the
virtual environment. The shared memory interface conveys arbitrary
numerical data, RGB image data, and point cloud data for the
simulation of LiDAR sensors. The interface consists of a plugin for
Unreal Engine, which contains the necessary read/write functions,
and a beta toolbox for MATLAB, capable of reading and writing
from the same shared memory locations specified in Unreal Engine,
MATLAB, and Simulink. The LiDAR sensor model was tested by
generating point clouds with beam patterns that mimic Velodyne
HDL-32E (32 beam) sensors and is demonstrated to run at sufficient
frame rates for real-time computations by leveraging the Graphics
Processing Unit (GPU).

Introduction

As the automotive industry progresses toward autonomy, the need for
simulation-based development and validation increases, as does the
need for greater detail and volume in simulations. Full autonomy
requires an unprecedented amount of trust placed in the vehicle’s
systems to safely handle a broad range of scenarios, and such trust
requires extensive testing. Estimates are on the order of 100 million
km and several hundred million euros for validation of autonomous
systems using road tests alone [1]. These estimates, along with the
dangers associated with testing specific scenarios, further motivates
the use of simulation.

The systems to be simulated also go beyond vehicle dynamics alone,
requiring sensor models in the loop with perception and control
algorithms, to test all aspects of an autonomous vehicle or driver
assist system. This includes the generation of synthetic camera data at
the RGB level, synthetic LiDAR point clouds, and synthetic radar
data, though this work focuses on the first two. The ability to
annotate this data with ground truth information is also necessary on
a large scale, both for use in evaluating the performance of perception
systems, and for machine learning systems.

Methodology

This paper focuses on an integration of capabilities existing within a
commercially available gaming engine and the MathWorks toolchain,
using a shared memory interface to enable co-simulation between the
two tools. It establishes a complete workflow for the simulation of
vehicle perception systems in a 3D driving environment. The
application of these capabilities can be extended to simulate and test
control systems as well, since the exchange of information over
shared memory is equally possible in both directions between the
virtual environment and the algorithms to be tested.

Figure 1. Block diagram of the simulator setup.

Software Tools Used

This paper focuses on the use of Unreal Engine 4 to create 3D virtual
driving environments, and the MathWorks toolchain as the
environment in which data is processed. Unreal Engine is a free, open
source video game engine. As such, it was possible to build new
functionality within this tool to support the export of data to
MATLAB over shared memory, and to acquire data about the 3D
environment necessary to generate synthetic camera and LiDAR data.
The gaming engine provides an efficient means of creating 3D
environments and dynamic scenarios through a drag and drop
interface; it provides the option of either C++ scripting or the visual
scripting language, Blueprints. Environments created in this method
can achieve a realistic, detailed appearance and geometry for the
generation of synthetic camera and LiDAR data. Meanwhile, the
MathWorks toolchain can process this data and prototype perception

Page 2 of 6

7/20/2015

and control algorithms using MATLAB and Simulink. This includes
toolboxes for computer vision, image processing, and LiDAR point
cloud processing; therefore enabling an interface between the two
software tools and allowing a full pipeline to be tested that includes
these capabilities.

Shared Memory Interface

In order to exchange numerical data between MATLAB and Unreal
Engine, a shared memory interface was developed. Shared memory
allows multiple processes running on a single machine to
simultaneously access the same location in memory. In order to
access shared memory using a string identifier, a library of
corresponding read/write functions were developed for both Unreal
Engine and MATLAB. The utilities are provided in the form of an
Unreal Engine plugin and MATLAB system objects, which provide a
simplified interface for end-users to share arbitrary data between the
two processes. The use of a MATLAB system object allows users to
provide a common implementation for accessing shared memory in
both MATLAB and Simulink. Using this shared memory interface,
users can program the virtual simulator in Unreal Engine to send
numerical data to MATLAB, wait for MATLAB to execute
algorithms with this data, and finally read data within the simulator;
thus facilitating full bi-directional communication for the simulation
and visualization of dynamic systems.

Figure 2. Write the vehicle position and velocity within the Unreal Engine to
shared memory.

Figure 3. Visualizing the vehicle velocity and position transmitted from the
virtual simulation environment in MATLAB.

Alternate Communication Methods Explored

The choice of using shared memory as the communication interface
was necessitated by the need to efficiently exchange large amounts of
data, such as high definition images from virtual cameras and
distance measurements from virtual LiDAR sensors within the Unreal
Engine project. With design iteration, two other popular data
exchange methods, UDP and TCP/IP, were also explored. However,
both methods were much slower in comparison to using shared
memory. The shared-memory interface was the only interface that
was fast enough to facilitate data-exchange rates that allowed the
Unreal project to run at 30 FPS or faster while still being able to
process camera and LiDAR data in MATLAB. Note that TCP/IP and
UDP communication are still useful in cases where MATLAB and
the Unreal Engine project is not running processes on the same
machine.

Virtual Camera Setup

The Unreal Engine-based virtual simulator platform provides photo-
realistic images which can be used to facilitate prototyping computer
vision algorithms in MATLAB; these extract useful information such
as vehicles, pedestrians, lanes etc. from images. To facilitate the
workflow, we set up a virtual camera sensor in Unreal Engine using a
Scene Capture 2D camera actor. The Scene Capture 2D actor is
available with Unreal Engine and can be placed anywhere in the
virtual driving environment. The images rendered by this actor are
transmitted via the shared memory interface to MATLAB. The
horizontal field of view angle, as well as image size and resolution,
are adjustable in the Scene Capture 2D component. In addition, it is
also feasible to add arbitrary post processing effects to the camera in
order to model lens distortion effects often present in actual camera
sensors. Image disturbances can also be introduced after transmission
of the image to MATLAB. To facilitate operating on these images in
MATLAB, the rendered images are transposed and the image format
is changed; the memory layout of the image is column-major, with
separate image planes for each RGB color channel.

Page 3 of 6

7/20/2015

Figure 4. Example of the shared memory interface for sending images to
MATLAB, alongside ground truth information to identify bounding boxes for
objects of interest.

Virtual LiDAR Data Generation

For autonomous vehicle navigation, LiDAR is an important sensor
that provides accurate distance measurements and reflectivity of
objects. A virtual LiDAR sensor model that transmits distances and
reflectivity of objects in the 3D scene to MATLAB is provided as
part of the package. Below we describe the details of the sensor
model.

Modeling Virtual LiDAR Distance Measurements

To model the sensor’s distance measurements to objects in the scene,
we repurposed a Scene Capture 2D camera’s rendering pipeline in
Unreal Engine, to output a texture image where each pixel location in
the image contains the distance of the visible surface from the sensor.
The depth image textures are then sampled at predetermined
locations which correspond to the LiDAR’s scanning pattern. This
scanning pattern is fixed and can be determined once at initialization
using the horizontal and vertical angular resolution that are part of the
parameters of the sensor which can be adjusted in the model. In
practice, we found that a Scene Capture 2D camera is only capable of
reliably rendering scenes within a 120-degree field of view. To model
a LiDAR sensor that covers a full 360-degree field of view, we set up
three Scene Capture 2D cameras and combined the depth images
from each camera. These components are brought together into a
single 360 degree LiDAR actor, which is provided as part of the
plugin.

Figure 5. The figure shows the scanning pattern of the LiDAR sensor model in
3D and the image pixel locations at which we sample a depth image in order
to model the beam pattern traced by the sensor. This plot corresponds to a
sensor with horizontal resolution of 0.16 degrees, vertical resolution of 1.33
degrees, vertical field of view of 41.3 degrees, and horizontal field of view of
120 degrees.

Modeling Surface Reflectivity of LiDAR Sensors

Reflectivity of each beam is important to model as it may be used by
the autonomous vehicle software. For example, surface reflectivity
can be used to distinguish lane markings from asphalt since lane
markings tend to possess higher reflectivity than asphalt in the
LiDAR spectrum. However, reflectivity is also influenced by other
factors, such as the direction of the beam relative to the surface it is
reflected from, the properties of the surface’s material, and the
distance the LiDAR beam travels.

We model reflectivity of the surface to a LiDAR beam with the
empirical Phong shading model [2] as the sum of diffuse and specular
reflections of a surface. The key difference between LiDAR and the
visible light electromagnetic spectrum is that the diffuse and specular
reflection coefficients of each material need to be specified as
properties of the material for the LiDAR’s wavelength. The
reflectivity is given by the sum of the diffuse and specular reflections.
Our model assumes that transmitting and receiving elements of the
LiDAR sensor are co-located at the virtual LiDAR sensor’s position
and that there is no ambient energy in the LiDAR spectrum.

𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒 = 𝐾𝑑𝑖𝑓𝑓𝑢𝑠𝑒 ∗ (�̂� − �̂�). �̂�

𝑅𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 = 𝐾𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 ∗ (2(�̂�. �̂�) �̂� − �̂�) . �̂�)𝛼

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒 + 𝑅𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟

Where,

𝑅𝑑𝑖𝑓𝑓𝑢𝑠𝑒= diffuse reflection

𝑅𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟= specular reflection

𝐾𝑑𝑖𝑓𝑓𝑢𝑠𝑒 = diffuse reflection coefficient of the reflecting surface

𝐾𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟 = specular reflection coefficient of the reflecting surface

�̂� = the normalized surface normal vector of the reflecting surface at
a given pixel location

α = the specular exponent of the surface

Page 4 of 6

7/20/2015

�̂� = the normalized position vector of the reflecting surface

�̂� = normalized position vector of the LiDAR sensor

𝑅𝑡𝑜𝑡𝑎𝑙 is the reflectivity of the surface

Due to time constraints, we could not find the reflectivity coefficients
for typical materials such as buildings, foliage, asphalt, and cars
based on observed values from an actual sensor for these materials.
We approximated the diffuse reflection coefficient in the LiDAR
spectrum by using the grayscale value of the material color in the
visible light spectrum. The specular reflection coefficient of the
materials for the LiDAR spectrum was assumed to be the same as
that of the visible light spectrum. Our model also does not account
for the decrease in reflectivity with increasing distances to surface,
due to loss of energy when propagating through a medium. However,
this information can be incorporated into the model once the
reflectivity values are more accurately compared to that of an actual
LiDAR sensor. Also, note that some real world LiDAR sensors rotate
around their vertical axis to capture the full 360-degree horizontal
field of view, while our model captures a full 360-degree field of
view instantaneously in the virtual environment without any physical
rotation.

The mathematical model for the LiDAR sensor was initially
prototyped in MATLAB. However, in order to support running the
virtual sensor model in real time, all computations were later
redesigned to run on the GPU as part of the Unreal Engine plugin.
The distance and reflectivity data obtained was then transmitted to
MATLAB via the shared memory interface described above.

In practice, we found that transmitting the distances as floating point
values in a Cartesian 3D coordinate system increases the amount of
data that needs to be exchanged via the shared memory interface, thus
hindering simulation speed. To avoid this issue, we quantized the
distance and reflectivity output and encoded them into a 32-bit
integer word before transmitting it to MATLAB. In MATLAB, the
values are decoded and can be either used directly in spherical
coordinates or converted back to a point cloud in Cartesian
coordinates (by multiplying the distances for each beam with the
corresponding unit vector along the beam direction).

Alternative Methods to Model LiDAR Sensors

Another technique explored was modeling the LiDAR sensor using
ray tracing, which is a method that is already provided as part of the
Unreal Engine programming environment. We found that performing
ray tracing for a large number of LiDAR beams using this method is
computationally very expensive. Furthermore, ray tracing capabilities
that are available to programmers only run on the CPU, which causes
the simulator to run slow (at 1-2 FPS on a Lenovo S20 workstation
with an NVIDIA GTX 980 graphics card). Because real-time
interaction with other actors in the virtual driving simulator is
important, this method was not suitable for our application. We did
not pursue using multi-threaded implementation of the ray tracing
algorithm since the alternative technique described in our article met
the needs.

Figure 6. The figure shows the 3D scene and the corresponding LiDAR output
viewed in MATLAB as a point cloud. This example shows a 360-degree field
of view. Vertical and horizontal field of view and beam spacing are adjustable
parameters. The reflectivity of each point is shown using a color map that
varies from blue for a reflectivity of 0, to green for a reflectivity of 1.

Sharing LiDAR Sensor Data with Autonomous Vehicle

Software

Ford’s application of the MathWorks toolchain supports validation of
autonomous driving software running in Ubuntu Linux. Multiple
methods can be used to integrate the virtual LiDAR sensor data into
the autonomous vehicle software. In our testing, we explored two
methods: data transmission via UDP packets and direct binary log
construction. The following is an overview and analysis of these two
methods.

For an initial proof of concept, we decided to use a Windows 10
laptop (Razer Blade 2016) to run Unreal Engine, MathWorks Unreal
Engine plugin prototype, and MATLAB in conjunction with an
Ubuntu 14.04 laptop (Dell Precision M6800) running Ford’s
autonomous vehicle code. We connected both laptops via an Ethernet
connection, configured a MATLAB script to send UDP packets, and
configured the Ubuntu laptop to listen to the port we had established
through MATLAB. Once this connection was made, we needed to
precondition the raw sensor data received via shared memory from
Unreal Engine by formatting the data correctly to meet the specs for a
Velodyne HDL-32E LiDAR. This included:

• Creating a data structure of correct dimensions and data
type

• Quantizing distance data to the nearest value set by spec (in
this case, 2mm range resolution)

• Setting default values for out-of-spec data points (negative
and extreme values)

• Looping continuously through the data to create and send
UDP packets using MATLAB’s UDP functionality

This setup allowed our Windows laptop to act as a LiDAR sensor,
since it was connected via Ethernet and provided the exact same UDP

Page 5 of 6

7/20/2015

format our Velodyne LiDAR sensors use in autonomous vehicle
navigation. This setup also took away the need for any post-
processing code and allowed our AV code to read in the data directly.
It is also possible to run both the Unreal Engine simulation and
autonomous vehicle code together on the same Linux machine, in
which case data packets can be generated in a similar manner, except
without the need for a physical Ethernet connection.

Figure 7. Synthetic LiDAR data that was transmitted from Unreal Engine to a
viewer that exists alongside Ford’s autonomous vehicle code.

For this proof of concept, the code was not yet optimized for speed.
The data speed averaged 300 packets sent/sec. Because each UDP
packet contains a set of 12 firing data sets, this is equivalent to 3600
sets per second. This data signifies we received approximately less
than 1.5 revolutions per second. Our spec required 10 revolutions per
second, meaning this method was too slow for real-time simulation
on the laptop hardware used. Further optimizations could be made to
reach our desired revolutions/sec on such hardware, but it was
decided to achieve useful results in the meantime by creating logs
that Ford’s autonomous vehicle code could read, showing a scenario
that was previously simulated. This leads to our second use case:
binary log construction.

For binary log construction, we preconditioned the data in the same
manner as we did for the interactive use case, where the autonomous
vehicle code was in the loop. The only difference is that data was sent
to a log rather than directly to the autonomous vehicle code. Before
we preconditioned the data, we stored the raw sensor data directly
into a binary data file to prevent slowdown for our log construction
procedure. After creating the file, we created a parser that would
parse this file and format all data as was described with the UDP
packet process above. Once we created 12 sets of 32 firings with their
associated rotation angle and a Velodyne data start identifier, we
added the remaining information required by the struct that our
autonomous vehicle code uses for LiDAR data packets. This included
spoofing extra timing data that was included in our struct so the struct
would be complete for the communication protocol and logging
framework to read. Once the struct format was created, we
constructed another layer to wrap struct information into the
communication protocol format. One advantage of this use case was
the ability to manipulate the log reading speed to run faster or slower
than real time if desired. Finally, the data was stored into a binary

data file as repeated messages, each containing their proper header
information, struct information, and LiDAR data information. This
log was then transferred (if necessary) to the machine running the
autonomous vehicle code, which then read and played the log back.

Creating the logs in this manner allowed us to run faster, slower, or
exactly at 10 revolutions/sec, by manipulating the timing to do so.
This was a great advantage for resimulation; interactive simulation
would be limited though to either slower than real time, or to running
on computer clusters or other hardware more powerful than the
machines used in this work.

Directions we intend to take to optimize the communication between
Unreal Engine and AV code include:

• Revise the UDP packet processing code for higher
performance.

• Unless the use case is to test the embedded hardware, avoid
transmitting data between different machines; run both the
sensor model simulation and the AV code on a single Linux
machine or cluster.

• Bypass UDP by outputting data directly to a format used
downstream of that by the AV code.

Once the LiDAR data is read by the AV code, it can then be used for
obstacle detection, lane marking detection, localization, and other
applications.

Future Work

With the release of the initial sensor models in the beta version of
MathWorks interface to Unreal Engine, we developed proof of
concept capabilities to model camera and LiDAR sensors. We plan to
extend this capability to also model a radar sensor using a similar
method to compute the surface reflection.

As part of future work on the camera sensor, the current model needs
to be extended to offer additional sensor parameters that can be
configured to match the settings of real world camera sensors. For
instance, we need the ability to specify intrinsic camera parameters,
such as focal length and principal point. We also plan to add fisheye
and wide-angle lens distortion parameters. In addition, we intend to
collect ground truth for objects viewed by the camera for use in the
training of machine learning algorithms, with applications such as
object detection and classification, or image segmentation.

For future work on the LiDAR sensor, we plan to compare the
reflectivity values with that of an actual LiDAR sensor, which will
aid in completing the empirical model used to calculate reflectivity.
After estimating the values of the reflection coefficients of common
materials in the LiDAR spectrum, we can enhance the tool to allow
users to specify these properties for any material used in Unreal
Engine. We also plan to model an alternative version that can take
into account the physical rotation of the sensor about a vertical axis.

Summary/Conclusions

Overall, a workflow was successfully established and tested that
provides an interface between a 3D virtual driving environment and
vehicle perception systems related to autonomy or active safety. This

Page 6 of 6

7/20/2015

virtual environment was shown to be capable of generating a
synthetic camera and LiDAR data that resembles data from real
sensors, and is capable of communicating bidirectionally, via shared
memory with algorithms in development.

References

1. Bartels, Arne. (2013, July 17). Online Services & Testing for
High Automated Driving Functions. In Testing, certification,

and licensing. Symposium conducted at the meeting of the
Transportation Research Board, Stanford, CA.

2. B. T. Phong, Illumination for computer generated
pictures, Communications of ACM 18 (1975), no. 6, 311–317.

Contact Information

Ashley Micks, 3200 Hillview Ave, Palo Alto 94304
Email: amicks2@ford.com, Ph: 650-646-6816

Arvind Jayaraman, 39555 Orchard Hill Place, Suite 280,
Novi, MI 48375
Email: ajayaram@mathworks.com, Ph: 248-675-3302

Ethan Gross, 20000 Rotunda Dr, Dearborn, MI 48124
Email: egross16@ford.com, Ph: 313-410-6165

Definitions/Abbreviations

LiDAR light detection and ranging

UDP user datagram protocol

TCP/IP transmission control
protocol/internet protocol

GPU Graphics Processing Unit

AV autonomous vehicle

RGB Red Green Blue (image)

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of
additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective
holders

© 2020 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

mailto:amicks2@ford.com
mailto:ajayaram@mathworks.com

