Electromechanical Engineering Systems

Last updated: 10/18/2013

Author Information

Kevin Craig
Marquette University

Course Details

Original Course Documents

Source file URL

Course Contents

Week 1

- Digitization
- Engineering System Investigation Process
- Electromechanical Engineering Systems Introduction
- Studio Exercise 01 Pre-Study Reading
- FG and Oscilloscope Introduction

Week 2

- Electrical Systems Part 1
- Engineering Systems
- System Inputs - Modeling - Time and Frequency Domains
- Class Quiz 01
- Studio Quiz 01
- Problem Set 01
- Week 2 Studio Exercise

Week 3

- Electrical Systems Part 2
- Class Quiz 02
- Studio Quiz 02
- Problem Set 02
- Week 3 Studio Exercise

Week 4

- Electrical Systems Part 3
- Intro to MATLAB
• Intro to Simulink
• Problem Sets 03 and 04
• Week 4 Studio Exercise

Week 5

• Introduction to Control Systems
• Studio Exercise Week 5 Part 1
• Studio Exercise Week 5 Part 2
• Problem Set 05
• Class Quizzes 03 and 04
• Feedback Control Systems Part 1

Week 6

• Class Quiz 05
• Electrical Filter Design Problem
• Second-Order Dynamic Systems

Week 7

• Pulse Width Modulation
• PI Control Design First-Order System
• Analog vs. PWM Control
• Class Quiz 06

Week 8 Mid-Semester Review

• Electromechanical Engineering Systems Mid-Semester Case Study
• Electromechanical Engineering Systems Slide Presentation
• Key Concepts Class Midterm Exam
• Key Concepts Studio Midterm Exam

Week 9

• Physical Modeling of Mechanical Systems
• Mechanical System Modeling Problems 1 DOF
• Studio Exercise 01: Pulse Width Modulation
• Studio Exercise 02: Discrete Modeling
• Analogies: Electrical - Mechanical
• Linearization
• Simple Physical System Supplementary Notes
• Rigid Body Plane Motion Kinetics Summary

Week 10

• Mechanical System Modeling Problems 1 DOF Solutions
• Discrete Control
• Arduino Control
• Class Quiz 06
• Class Quiz 07
• Discrete Control One-Page Summary
• Mechanical System Design Problem
• Problem Set 06
• Studio Quiz 06
• Studio Quiz 07

Week 11

• Electrical Systems Part 3
• Electrical Systems Part 4
• Electrical Systems Part 5
• Mag Lev Sensor Exercise
• Mag Lev Power Stage Exercise

Week 12

• Basic Electrodynamics
• Magnetic Levitation System Slides
• Magnetic System Fundamentals

Week 13

• Brushed DC Motor Modeling
• Brushed DC Motors Abridged
• Pittman Servo Motors Application Note

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License. Learn more about MathWorks academic resources:

• MATLAB Courseware
• Hardware Resources
• Classroom Resources
• MATLAB Examples
• Books
• Tutorials
• Webinars
• Technical Articles