Symbolic Math Toolbox: Quick Reference Sheet

Symbolic Variables

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
</table>
| `syms` | Create symbolic variables: `syms x;`
Create arrays of symbolic scalar variables: `syms M [2 3];`
Create symbolic matrix variables: `syms A [2 3] matrix;`
| `symmatrix2sym` | Convert symbolic matrix variable to array of symbolic scalar variables: `syms A B [2 3] matrix; X = A + B; Y = symmatrix2sym(X)` |

Calculus

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>diff</code></td>
<td>Differentiation: <code>diff(sin(x^2+t),x)</code></td>
</tr>
<tr>
<td><code>int</code></td>
<td>Definite and indefinite integrals: <code>int(x/(1 + z^2),z)</code></td>
</tr>
<tr>
<td><code>release</code></td>
<td>Evaluate integrals: <code>F = int(cos(x),'Hold',true); G = release(F)</code></td>
</tr>
<tr>
<td><code>limit</code></td>
<td>Compute limit of symbolic expression: <code>limit(1/x,x,0,'left')</code></td>
</tr>
<tr>
<td><code>taylor</code></td>
<td>Taylor series: <code>x; taylor(exp(-x))</code></td>
</tr>
<tr>
<td><code>series</code></td>
<td>Puiseux series expansion: <code>x; series(1/sin(x),x)</code></td>
</tr>
<tr>
<td><code>symsum</code></td>
<td>Sum of a series: <code>x; symsum(1/x^2,1)</code></td>
</tr>
<tr>
<td><code>gradient</code></td>
<td>Gradient vector of scalar function: <code>syms x y z; gradient(x*y + 2*z*x,[x y z])</code></td>
</tr>
<tr>
<td><code>jacobian</code></td>
<td>Jacobian matrix: <code>syms x y z u v; jacobian([x*y*z; y; x+z],[x y z])</code></td>
</tr>
<tr>
<td><code>hessian</code></td>
<td>Hessian matrix of scalar function: <code>syms x y z; hessian(x*y + 2*z*x,[x y z])</code></td>
</tr>
<tr>
<td><code>laplacian</code></td>
<td>Laplacian of scalar function: <code>syms x y z; laplacian(1/x + y^2 + z^3,[x y z])</code></td>
</tr>
<tr>
<td><code>divergence</code></td>
<td>Divergence of vector field: <code>syms x y z; divergence([x^2 2*y z],[x y z])</code></td>
</tr>
</tbody>
</table>

Algebra

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>double</code></td>
<td>Convert symbolic values to double precision: <code>symN = sym(pi); doubleN = double(symN)</code></td>
</tr>
<tr>
<td><code>vpa</code></td>
<td>Control precision of computations with variable-precision arithmetic: <code>x; p = sym(pi); piVpa = vpa(p)</code></td>
</tr>
<tr>
<td><code>subs</code></td>
<td>Symbolic substitution: <code>syms a b; subs(a^3+b,[a,b],[2,sym('e'))</code></td>
</tr>
<tr>
<td><code>solve</code></td>
<td>Equations and systems solver: <code>syms a b u v; S = solve(u+v==a, u-v==b)</code></td>
</tr>
<tr>
<td><code>dsolve</code></td>
<td>Solve differential equations: <code>syms y(t) a; eqn = diff(y,t)==a*y; S = dsolve(eqn)</code></td>
</tr>
<tr>
<td><code>pdeCoefficients</code></td>
<td>Extract PDE Coefficients: <code>syms u(x,y); pdeeq = laplacian(u,[x y])== -3; coeffs = pdeCoefficients(pdeeq,u)</code></td>
</tr>
<tr>
<td><code>isolate</code></td>
<td>Isolate variable or expression in equation: <code>syms a b c x; isolate(a*x^2+b*x+c==0,x)</code></td>
</tr>
<tr>
<td><code>lhs</code></td>
<td>Left side (LHS) of equation: <code>syms x y; lhs(x^2 >= y^2)</code></td>
</tr>
<tr>
<td><code>rhs</code></td>
<td>Right side (RHS) of equation: <code>syms x y; rhs(x^2 >= y^2)</code></td>
</tr>
<tr>
<td><code>simplify</code></td>
<td>Algebraic simplification: <code>syms x; simplify(sin(x)^2 + cos(x)^2)</code></td>
</tr>
<tr>
<td><code>rewrite</code></td>
<td>Rewrite expression in terms of another function: <code>syms x; rewrite(tan(x)/cos(x),'sin')</code></td>
</tr>
<tr>
<td><code>resultant</code></td>
<td>Resultant of two polynomials: <code>syms x y; p = x^2+y; q = x-2*y; resultant(p,q)</code></td>
</tr>
</tbody>
</table>
Symbolic Math Toolbox: Quick Reference Sheet

Graphics

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fplot</code></td>
<td>Plot symbolic expression or function:</td>
</tr>
<tr>
<td></td>
<td><code>syms x; f(x) = sin(x)/x; fplot(f)</code></td>
</tr>
<tr>
<td><code>fplot3</code></td>
<td>Plot 3-D parametric curve:</td>
</tr>
<tr>
<td></td>
<td><code>syms x; fplot3(sin(x),cos(x),log(x))</code></td>
</tr>
<tr>
<td><code>fsurf</code></td>
<td>Plot 3-D surface, mesh or contour:</td>
</tr>
<tr>
<td></td>
<td><code>syms x y; f(x,y)=x*exp(-x^2-y^2); fsurf(f)</code></td>
</tr>
<tr>
<td><code>fmesh</code></td>
<td>Plot 3-D mesh:</td>
</tr>
<tr>
<td></td>
<td><code>syms x y; f(x,y)=x*exp(-x^2-y^2); fmesh(f)</code></td>
</tr>
<tr>
<td><code>fcontour</code></td>
<td>Plot contours:</td>
</tr>
<tr>
<td></td>
<td><code>f(x,y)=x*exp(-x^2-y^2); fcontour(f)</code></td>
</tr>
<tr>
<td><code>fimplicit</code></td>
<td>Plot implicit symbolic equation or function:</td>
</tr>
<tr>
<td></td>
<td><code>syms x y; fimplicit(y^2-x^2*(x+1),[-2 2])</code></td>
</tr>
<tr>
<td><code>fimplicit3</code></td>
<td><code>syms x y z; fimplicit3(x^2*y+z+y^3-z^3)</code></td>
</tr>
<tr>
<td><code>fanimator</code></td>
<td>Create stop-motion animation object:</td>
</tr>
<tr>
<td></td>
<td><code>syms y t; fanimator(@fplot,sin(x+t),[0 t]); playAnimation</code></td>
</tr>
</tbody>
</table>

Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>symfun</code></td>
<td>Create Symbolic Functions:</td>
</tr>
<tr>
<td></td>
<td><code>syms x y; f = symfun(x+y,[x y]); f(1,2)</code></td>
</tr>
<tr>
<td><code>piecewise</code></td>
<td>Piecewise defined expression or function:</td>
</tr>
<tr>
<td></td>
<td><code>g(x) = piecewise(x<0,-1,x>=0,2); g(3)</code></td>
</tr>
<tr>
<td><code>matlabFunction</code></td>
<td>Convert symbolic expression to function handle or file:</td>
</tr>
<tr>
<td></td>
<td><code>syms x y; f = sqrt(x^2 + y^2); g = matlabFunction(f)</code></td>
</tr>
<tr>
<td><code>matlabFunctionBlock</code></td>
<td>Convert symbolic expression to MATLAB function block for Simulink:</td>
</tr>
<tr>
<td></td>
<td><code>new_system('my_system'); open_system('my_system'); syms x y z; f = x^2 + y^2 + z^2; matlabFunctionBlock('my_system/my_block',f)</code></td>
</tr>
<tr>
<td><code>simscapeEquation</code></td>
<td>Convert symbolic expression to Simscape equations:</td>
</tr>
<tr>
<td></td>
<td><code>syms t x(t) y(t); phi = diff(x) + 5*y + sin(t); simscapeEquation(phi)</code></td>
</tr>
</tbody>
</table>

Learn More

www.mathworks.com/products/symbolic

Related Products

Control System Toolbox. Design and analyze control systems.

Financial Toolbox. Analyze financial data and develop financial models.

Optimization Toolbox. Solve linear, quadratic, conic, integer, and nonlinear optimization problems.