

Bathtub Curve Generation

Kerry Schutz kschutz@mathworks.com

What: A Measure of Reliability

Describes the failure rate of products like cars, TVs, toasters and...

even applies to non-products like signal integrity (SI).

Bathtub curve as a jitter tolerance indicator

• Bathtub Curve = BER(sample-time offset from ideal)

How: Two Ways to Generate Bathtub Curves

```
1. Direct: Count Errors to determine BER
if RX bit(n) != TX bit(n)
error_cnt = error_cnt + 1;
n++;
```

2. Indirect: Statistically estimate BER from zero-crossings

Both methods have their place.

1. Direct Method: Counting Errors

- Example: 100 errors for 1e-12 BER \rightarrow 100e12 total bits
 - > Hardware: Assume 10 Gb/s processing. 100e12/10e9 = 1e4 sec
 - Software: Not feasible.

2. Indirect Method: Statistical BER Estimation

- Statistically estimate BER from zero-crossings
- An *all-at-once* measurement technique
 - Single simulation
 - > No errors, no comparisons

- When and Why: Applicable when Dual-Dirac¹ modeling assumption holds AND:
 - Pre-silicon
 - BERT is unavailable
 - Speed is paramount

1. http://www.ece.ncsu.edu/asic/ece733/2009/docs/Jitter_Tektronics.pdf

How: It's a 3 step process

2. Histogram ZC's & DD Fit

Our Flow Today

- Generate data with RJ, DJ, and ISI
- Coarsely Align Eye
- Log Channel Output \rightarrow (Histogram, Fit, & Integrate using MATLAB)

Getting Started

For bathtub curve examples

https://www.mathworks.com/programs/mixed-signal/index.html

Intel-only portal

www.mathworks.com/programs/user-portals/intel.html

