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MATLAB for Rapid Simulation 

Simulation

Many iterations
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Development
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Development
Simulation

Algorithm Development
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Prototyping & DevelopmentSimulation

Moving from Simulation to Prototype and Development

Golden Reference

MATLAB Code
C/C++ 

Code

Float 

To Fixed

I/O Device 

Drivers

Optimization

Optimization

Optimization

Testing

V&V

• Algorithm and application development often use different groups, toolset, languages

• Long development cycle with many opportunities for errors

Optimization TestingIntegration
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PrototypeSimulation Simulate & Prototype

Development Workflow with MATLAB

Visualize

Experiment 

Test
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Demo 1:  Visualizing, Prototyping, and Testing from Visual Studio

with a Gaussian Filter
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MATLAB

MATLAB - Framework for C/C++ Development

PROTOTYPING, TESTING, and VERIFICATION

YourFunction.cInput

Preprocessing

Output

Visualization
gaussian3x3.cpp
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Summary Demo 1:  

Visualizing, Verifying, and Prototyping 

 Create a powerful C/C++ development & test harnesses

– Simulate I/O

– Visualize your data (printf on steroids)

– Test & Validate to downstream minimize errors

 Access MATLAB functions to quickly prototype

 Technologies include:

– Visual Studio or Eclipse

– MATLAB Engine

– Unit Testing Framework
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Simulate & Prototype

Development Workflow with MATLAB

Visualize

Experiment 

Test

Integrate/Test

Existing

Code
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Prototyping

MATLAB for System Design

 Simulate with existing code to maximize reuse

 Prototype with proven code to lower risk

Simulation

Existing C/C++

Fn3.c

Fn2.c

Fn1.c

Integrate existing C/C++ code 

in MATLAB for simulation

MATLAB

Fn0.m

Existing C/C++

Fn3.c

Fn2.c

Fn1.c

Generated

C/C++

Fn0.C

Existing C/C++ code base 

integrated with generated code
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Demo 2:  

Integrate, Simulate, and Prototype with existing C code with 

MATLAB
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Summary Demo 2:  

System design by leveraging existing code

 Replace MATLAB functions with your custom C code

 Create prototypes with proven code

 Maximize reuse and minimize risk 

– Generate code that leverages existing C code 

 Technologies include:

– LoadLibrary

– coder.ExternalDependency

– MEX
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Reduce Overall Development Time
(Improve Quality, Reduce Re-spins, etc.)

Without
MathWorks

Tools

With
MathWorks

Tools

Time spent in project phases

Requirements System Design Implementation Integration Testing
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Using MATLAB for software development enables you to…

 Simulate I/O, Visualize, and Test C/C++ code

 Rapidly prototypes functionality

 Generate C Code to seed development

 Integrate proven code into MATLAB to seed next 

generation designs

 Deploy designs with more confidence and less time
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Thank you

MATLAB for Software Development and System Design
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Agenda

Introduction to MATLAB Overview

MATLAB for Development & Design

Simulink for Development & Design

User Stories

Summary and Wrap-up
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The leading environment for modeling, 
simulating, and implementing 
communications systems and semiconductors

 Foundation for Model-Based Design

 Digital, analog, and mixed-signal systems, 
with floating- and fixed-point support

 Algorithm development, system-level design, 
implementation, and test and verification

 Optimized code generation for FPGAs and 
DSPs

 Blocksets for signal processing, 
communications, video and image 
processing, and RF

 Open architecture with links to third-party 
modeling tools, IDEs, and test systems 
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Simulink Key Features

 MATLAB® integration

 Hierarchical, component-based modeling

 Custom code integration and management

 Custom board integration 

 Extensive library of predefined blocks

 Application-specific libraries available

 Open Application Program Interface (API) 
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Simulink for Software Development and 

System Design

 Are you working on a complex embedded system?

 Do you want to integrate existing code into your designs?  

– ARM, x86/x64, DSP, HDL, GPU…

 Do you have challenges with build, test, and validation of 

algorithms?

 Do you want to rapidly prototype algorithms on hardware?

 Do you practice Agile Software Development?
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Simulink Enables:

 A single common graphical environment for capturing, 

executing ideas, and collaboration.

 Rapid prototyping  environment from MATLAB -

Hardware In the Loop (HIL) testing on embedded 

processors

– i.e. ARM, x86, FPGA, DSP…

 Common environment for development and testing of the 

entire design, reduce transition introduced defects

– “build a little / test a little” workflows 

 i.e. Vision + Camera + Controls + Signal Processing + etc.
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Simulink enables:

 Integration of existing code directly into the prototype

– i.e. Blocks with ARM, FPGA, or DSP code

 Dynamic/executable models allow for rapid evaluation of 

requirements changes

 Code generation for rapid prototyping and software 

deliveries
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Using Simulink for Embedded Design

Analyze trade-offs

Target embedded 

devices

Generate

C-code

Rapidly prototype ideas

Implicit timing and 

concurrency

Continuous

verification

Integrate 

Existing Code
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&  Agile Development

Collect Inputs & 
Requirements

Sprint 
Planning

Iterate/Sprint

Test

Build

Design

Analyze

Acceptance & 
Delivery

Model-Based Design

Models
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The Value of Model-Based Design

Model-Based Design

 Executable specification

 Design with simulation

 Implementation through code 

generation

 Continuous test and verification

Innovation

 Rapid design iterations

 “What-if” studies

 Unique features and differentiators

Quality 

 Reduce design errors

 Minimize hand coding errors

 Unambiguous communication internally 

and externally

Cost

 Reduce expensive physical prototypes

 Reduce re-work

 Automate testing

Time-to-market

 Get the product right the first time
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Centre for Concepts in Mechatronics 

Improves Resolution of Agfa Printers Using 

MathWorks Tools for Model-Based Design

Challenge
Improve image resolution on industrial inkjet printers

Solution
Use MathWorks tools for Model-Based Design to design 

and automatically generate code for a new control system 

that enables increased image resolution

Results
 Design iterations completed in minutes

 Functional performance improved by a factor of five

 Hardware-independent solution implemented

“Using MathWorks tools, we can 

realize our implementations 

directly, reducing costs and 

saving up to four weeks of time.”

Arend-Jan Beltman

CCM

Substrate path of an industrial printer.

Link to user story

http://www.mathworks.com/company/user_stories/centre-for-concepts-in-mechatronics-improves-resolution-of-industry-leading-agfa-printers-using-model-based-design.html?by=company
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Challenge
Develop control systems for a two-armed mobile 

humanoid robot with 53 degrees of freedom

Solution
Use Model-Based Design with MATLAB and Simulink 

to model the controllers and plant, generate code for 

HIL testing and real-time operation, optimize 

trajectories, and automate sensor calibration

Results
 Programming defects eliminated

 Complex functionality implemented in hours

 Advanced control development by students 

enabled

DLR Develops Autonomous Humanoid Robot 

with Model-Based Design

DLR’s humanoid robot Agile 

Justin autonomously performing 

a complex construction task.

Link to user story

“Model-Based Design and automatic 

code generation enable us to cope 

with the complexity of Agile Justin’s 

53 degrees of freedom. Without 

Model-Based Design it would have 

been impossible to build the 

controllers for such a complex 

robotic system with hard real-time 

performance.”

Berthold Bäuml

DLR   

http://www.mathworks.com/company/user_stories/dlr-develops-autonomous-humanoid-robot-with-model-based-design.html?by=company
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Challenge
Evaluate design concepts and parameter values for 

construction equipment before building physical 

prototypes

Solution
Use Simulink, Simscape, and Simulink Real-Time to 

model hydraulic, mechanical, and engine systems and 

perform real-time, operator-in-the-loop simulations

Results
 Number of prototypes reduced

 Issues in the field resolved faster

 Controller tuned in simulation

Volvo Construction Equipment Streamlines 

Product Development with a Real-Time, 

Human-in-the-Loop Simulator

Volvo Construction Equipment’s real-time, 

human-in-the-loop simulator.

Link to user story

“It was technically impossible for 

us to build a full-scale hydraulic 

system model to run in real time 

without Simulink, Simscape, and 

Simulink Real-Time. Our simulator 

enables us to test new concepts 

for construction equipment, tune 

parameters, reduce lead times, 

and minimize issues in the field.”

Jae Yong Lee

Volvo Construction Equipment   
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What is in the OpenCV Interface Support Package*?

 Custom MEX build command (mexOpenCV)

– Links against pre-built OpenCV libraries

– Accepts all standard MEX flags 

 Data type conversions (opencvmex.hpp)

– Conversions for all commonly used data conversions 

 Examples available 

– Normalized cross correlation

– Geometric transform estimation

– Background subtraction  

* Requires Computer Vision System Toolbox



31

Things to Consider When Using OpenCV with MATLAB

 Nearly all algorithms are in MATLAB or toolboxes

– Algorithms not available are often very recent

 MATLAB performance is competitive

– Sometimes MATLAB is faster, sometimes OpenCV is faster

 Use our build of OpenCV

– Avoid library and build incompatibilities

– Save time and effort as we’ve figured out the best build options
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Getting Started

 MATLAB Engine – APIs and Documents
– http://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-c-and-fortran-

programs.html

 Setting up Visual Studio, Eclipse, or Xcode
– http://www.mathworks.com/help/matlab/matlab_external/compiling-engine-applications-in-

an-ide.html

 LoadLibrary
– http://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html

 Coder.ceval
– http://www.mathworks.com/help/simulink/slref/coder.ceval.html

http://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-c-and-fortran-programs.html
http://www.mathworks.com/help/matlab/matlab_external/compiling-engine-applications-in-an-ide.html
http://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
http://www.mathworks.com/help/simulink/slref/coder.ceval.html
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Questions?
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MATLAB for Software Development

Why? How? What?

Why? How? What?

Reduce costly errors 

during development

Visualization data directly 

from Visual Studio (Any 

IDE)

MATLAB + 

Visual Studio / Eclipse

Rapidly prototype

missing functionality 

during development

Call MATLAB functions

directly from Visual Studio

MATLAB + IPT +

CVST

Visual Studio / Eclipse

Build a testing 

framework for C/C++ 

development

Call MATLAB functions / 

unit tests directly from 

Visual Studio

MATLAB + 

Visual Studio / Eclipse

Leverage existing code

bases

Call existing code and 

libraries from MATLAB

MATLAB

Visual Studio / Eclipse

Target embedded vision 

systems

Manage algorithms in 

MATLAB and generate C 

code

MATLAB Coder, Fixed 

Point Designer

Visual Studio / Eclipse


