
1© 2015 The MathWorks, Inc.

MATLAB for Software Development and

System Design

Andy Thé
Technical Marketing
Image Processing Applications

2

New Code

Typical Development Workflow

DevelopmentPrototypeSimulation

Existing Code Test and

Verification?

3

MATLAB for Rapid Simulation

Simulation

Many iterations

Concept

Development

Algorithm

Development
Simulation

Algorithm Development

4

Prototyping & DevelopmentSimulation

Moving from Simulation to Prototype and Development

Golden Reference

MATLAB Code
C/C++

Code

Float

To Fixed

I/O Device

Drivers

Optimization

Optimization

Optimization

Testing

V&V

• Algorithm and application development often use different groups, toolset, languages

• Long development cycle with many opportunities for errors

Optimization TestingIntegration

5

PrototypeSimulation Simulate & Prototype

Development Workflow with MATLAB

Visualize

Experiment

Test

6

Demo 1: Visualizing, Prototyping, and Testing from Visual Studio

with a Gaussian Filter

7

MATLAB

MATLAB - Framework for C/C++ Development

PROTOTYPING, TESTING, and VERIFICATION

YourFunction.cInput

Preprocessing

Output

Visualization
gaussian3x3.cpp

8

Summary Demo 1:

Visualizing, Verifying, and Prototyping

 Create a powerful C/C++ development & test harnesses

– Simulate I/O

– Visualize your data (printf on steroids)

– Test & Validate to downstream minimize errors

 Access MATLAB functions to quickly prototype

 Technologies include:

– Visual Studio or Eclipse

– MATLAB Engine

– Unit Testing Framework

9

Simulate & Prototype

Development Workflow with MATLAB

Visualize

Experiment

Test

Integrate/Test

Existing

Code

10

Prototyping

MATLAB for System Design

 Simulate with existing code to maximize reuse

 Prototype with proven code to lower risk

Simulation

Existing C/C++

Fn3.c

Fn2.c

Fn1.c

Integrate existing C/C++ code

in MATLAB for simulation

MATLAB

Fn0.m

Existing C/C++

Fn3.c

Fn2.c

Fn1.c

Generated

C/C++

Fn0.C

Existing C/C++ code base

integrated with generated code

11

Demo 2:

Integrate, Simulate, and Prototype with existing C code with

MATLAB

12

Summary Demo 2:

System design by leveraging existing code

 Replace MATLAB functions with your custom C code

 Create prototypes with proven code

 Maximize reuse and minimize risk

– Generate code that leverages existing C code

 Technologies include:

– LoadLibrary

– coder.ExternalDependency

– MEX

13

Reduce Overall Development Time
(Improve Quality, Reduce Re-spins, etc.)

Without
MathWorks

Tools

With
MathWorks

Tools

Time spent in project phases

Requirements System Design Implementation Integration Testing

14

Using MATLAB for software development enables you to…

 Simulate I/O, Visualize, and Test C/C++ code

 Rapidly prototypes functionality

 Generate C Code to seed development

 Integrate proven code into MATLAB to seed next

generation designs

 Deploy designs with more confidence and less time

15© 2015 The MathWorks, Inc.

Thank you

MATLAB for Software Development and System Design

16

Agenda

Introduction to MATLAB Overview

MATLAB for Development & Design

Simulink for Development & Design

User Stories

Summary and Wrap-up

17

The leading environment for modeling,
simulating, and implementing
communications systems and semiconductors

 Foundation for Model-Based Design

 Digital, analog, and mixed-signal systems,
with floating- and fixed-point support

 Algorithm development, system-level design,
implementation, and test and verification

 Optimized code generation for FPGAs and
DSPs

 Blocksets for signal processing,
communications, video and image
processing, and RF

 Open architecture with links to third-party
modeling tools, IDEs, and test systems

18

Simulink Key Features

 MATLAB® integration

 Hierarchical, component-based modeling

 Custom code integration and management

 Custom board integration

 Extensive library of predefined blocks

 Application-specific libraries available

 Open Application Program Interface (API)

19

Simulink for Software Development and

System Design

 Are you working on a complex embedded system?

 Do you want to integrate existing code into your designs?

– ARM, x86/x64, DSP, HDL, GPU…

 Do you have challenges with build, test, and validation of

algorithms?

 Do you want to rapidly prototype algorithms on hardware?

 Do you practice Agile Software Development?

20

Simulink Enables:

 A single common graphical environment for capturing,

executing ideas, and collaboration.

 Rapid prototyping environment from MATLAB -

Hardware In the Loop (HIL) testing on embedded

processors

– i.e. ARM, x86, FPGA, DSP…

 Common environment for development and testing of the

entire design, reduce transition introduced defects

– “build a little / test a little” workflows

 i.e. Vision + Camera + Controls + Signal Processing + etc.

21

Simulink enables:

 Integration of existing code directly into the prototype

– i.e. Blocks with ARM, FPGA, or DSP code

 Dynamic/executable models allow for rapid evaluation of

requirements changes

 Code generation for rapid prototyping and software

deliveries

22

Using Simulink for Embedded Design

Analyze trade-offs

Target embedded

devices

Generate

C-code

Rapidly prototype ideas

Implicit timing and

concurrency

Continuous

verification

Integrate

Existing Code

23

& Agile Development

Collect Inputs &
Requirements

Sprint
Planning

Iterate/Sprint

Test

Build

Design

Analyze

Acceptance &
Delivery

Model-Based Design

Models

24

The Value of Model-Based Design

Model-Based Design

 Executable specification

 Design with simulation

 Implementation through code

generation

 Continuous test and verification

Innovation

 Rapid design iterations

 “What-if” studies

 Unique features and differentiators

Quality

 Reduce design errors

 Minimize hand coding errors

 Unambiguous communication internally

and externally

Cost

 Reduce expensive physical prototypes

 Reduce re-work

 Automate testing

Time-to-market

 Get the product right the first time

25

Agenda

Introduction to MATLAB Overview

MATLAB for Development & Design

Simulink for Development & Design

User Stories

Summary and Wrap-up

26

Centre for Concepts in Mechatronics

Improves Resolution of Agfa Printers Using

MathWorks Tools for Model-Based Design

Challenge
Improve image resolution on industrial inkjet printers

Solution
Use MathWorks tools for Model-Based Design to design

and automatically generate code for a new control system

that enables increased image resolution

Results
 Design iterations completed in minutes

 Functional performance improved by a factor of five

 Hardware-independent solution implemented

“Using MathWorks tools, we can

realize our implementations

directly, reducing costs and

saving up to four weeks of time.”

Arend-Jan Beltman

CCM

Substrate path of an industrial printer.

Link to user story

http://www.mathworks.com/company/user_stories/centre-for-concepts-in-mechatronics-improves-resolution-of-industry-leading-agfa-printers-using-model-based-design.html?by=company

27

Challenge
Develop control systems for a two-armed mobile

humanoid robot with 53 degrees of freedom

Solution
Use Model-Based Design with MATLAB and Simulink

to model the controllers and plant, generate code for

HIL testing and real-time operation, optimize

trajectories, and automate sensor calibration

Results
 Programming defects eliminated

 Complex functionality implemented in hours

 Advanced control development by students

enabled

DLR Develops Autonomous Humanoid Robot

with Model-Based Design

DLR’s humanoid robot Agile

Justin autonomously performing

a complex construction task.

Link to user story

“Model-Based Design and automatic

code generation enable us to cope

with the complexity of Agile Justin’s

53 degrees of freedom. Without

Model-Based Design it would have

been impossible to build the

controllers for such a complex

robotic system with hard real-time

performance.”

Berthold Bäuml

DLR

http://www.mathworks.com/company/user_stories/dlr-develops-autonomous-humanoid-robot-with-model-based-design.html?by=company

28

Challenge
Evaluate design concepts and parameter values for

construction equipment before building physical

prototypes

Solution
Use Simulink, Simscape, and Simulink Real-Time to

model hydraulic, mechanical, and engine systems and

perform real-time, operator-in-the-loop simulations

Results
 Number of prototypes reduced

 Issues in the field resolved faster

 Controller tuned in simulation

Volvo Construction Equipment Streamlines

Product Development with a Real-Time,

Human-in-the-Loop Simulator

Volvo Construction Equipment’s real-time,

human-in-the-loop simulator.

Link to user story

“It was technically impossible for

us to build a full-scale hydraulic

system model to run in real time

without Simulink, Simscape, and

Simulink Real-Time. Our simulator

enables us to test new concepts

for construction equipment, tune

parameters, reduce lead times,

and minimize issues in the field.”

Jae Yong Lee

Volvo Construction Equipment

29

Agenda

Introduction to MATLAB Overview

MATLAB for Development & Design

Simulink for Development & Design

User Stories

Summary and Wrap-up

30

What is in the OpenCV Interface Support Package*?

 Custom MEX build command (mexOpenCV)

– Links against pre-built OpenCV libraries

– Accepts all standard MEX flags

 Data type conversions (opencvmex.hpp)

– Conversions for all commonly used data conversions

 Examples available

– Normalized cross correlation

– Geometric transform estimation

– Background subtraction

* Requires Computer Vision System Toolbox

31

Things to Consider When Using OpenCV with MATLAB

 Nearly all algorithms are in MATLAB or toolboxes

– Algorithms not available are often very recent

 MATLAB performance is competitive

– Sometimes MATLAB is faster, sometimes OpenCV is faster

 Use our build of OpenCV

– Avoid library and build incompatibilities

– Save time and effort as we’ve figured out the best build options

32

Getting Started

 MATLAB Engine – APIs and Documents
– http://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-c-and-fortran-

programs.html

 Setting up Visual Studio, Eclipse, or Xcode
– http://www.mathworks.com/help/matlab/matlab_external/compiling-engine-applications-in-

an-ide.html

 LoadLibrary
– http://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html

 Coder.ceval
– http://www.mathworks.com/help/simulink/slref/coder.ceval.html

http://www.mathworks.com/help/matlab/calling-matlab-engine-from-c-c-and-fortran-programs.html
http://www.mathworks.com/help/matlab/matlab_external/compiling-engine-applications-in-an-ide.html
http://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
http://www.mathworks.com/help/simulink/slref/coder.ceval.html

33

Questions?

34

MATLAB for Software Development

Why? How? What?

Why? How? What?

Reduce costly errors

during development

Visualization data directly

from Visual Studio (Any

IDE)

MATLAB +

Visual Studio / Eclipse

Rapidly prototype

missing functionality

during development

Call MATLAB functions

directly from Visual Studio

MATLAB + IPT +

CVST

Visual Studio / Eclipse

Build a testing

framework for C/C++

development

Call MATLAB functions /

unit tests directly from

Visual Studio

MATLAB +

Visual Studio / Eclipse

Leverage existing code

bases

Call existing code and

libraries from MATLAB

MATLAB

Visual Studio / Eclipse

Target embedded vision

systems

Manage algorithms in

MATLAB and generate C

code

MATLAB Coder, Fixed

Point Designer

Visual Studio / Eclipse

