

Simulink® and LEGO®
MINDSTORMS® EV3
A brief workshop on Simulink support for Project
Based Learning with LEGO MINDSTORMS EV3

 Simulink® and LEGO® MINDSTORMS® EV3®

2 | P a g e

Licensed under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

License

This is a human-readable summary of (and not a substitute for) the license

http://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to:

 Share — copy and redistribute the material in any medium or format

 Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate

if changes were made. You may do so in any reasonable manner, but not in any way that

suggests the licensor endorses you or your use.

 ShareAlike — If you remix, transform, or build upon the material, you must distribute your

contributions under the same license as the original.

 No additional restrictions — You may not apply legal terms or technological measures that

legally restrict others from doing anything the license permits.

http://creativecommons.org/licenses/by-sa/4.0/legalcode

 Simulink® and LEGO® MINDSTORMS® EV3®

3 | P a g e

Contents
Motivation for this workshop .. 4

Getting started.. 4

How to use and work with this manual .. 5

I1. Workshop run-through options .. 5

I2. Notation and formatting.. 5

Project 0: Getting Familiar with Simulink ... 6

Simulink .. 6

Simulink Library Browser and Simulink Models .. 6

More on Simulink .. 8

Project 1: Explore Simulink and LEGO MINDSTORMS EV3 .. 9

P1.1 Get Started: Program EV3 Status Light with Simulink .. 9

P1.2 Work with EV3 I/O: Access and Display EV3 Sensor Value .. 13

P1.3 Model, Test and Implement Collision Avoidance Behavior ... 15

P1.4 Control interactively: Speed and Steering Control ... 17

Project 2: Complex System Design with Simulink .. 20

P2.1 Line Following Robot .. 20

P2.2 Line-Following and Collision-Avoiding Robot – With Base Simulink Blocks ... 22

P2.3 Line-Following and Collision-Avoiding Robot – With User-Defined MATLAB Function Block ... 24

P2.4 Line-Following and Collision-Avoiding Robot – Event-driven modeling ... 27

Optional Project 1: Plant Modeling for LEGO EV3 Robot .. 31

OP1.1 Simulation Model of EV3 Robot .. 31

OP1.2 Motor Modeling for EV3 Plant .. 35

Optional Project 2: Controller Design for LEGO Robot .. 42

OP2.1 Design PID Controller for EV3 Robot .. 42

OP2.2 Fine-tune PID Controller for desired step response .. 48

Optional Project 3: Event-driven modeling using Stateflow ... 53

Appendix 1: Background Information ... 57

Simulink .. 57

Hardware Support Packages .. 57

LEGO MINDSTORMS EV3 .. 58

Appendix 2: Software and Hardware Setup ... 59

Software ... 59

Hardware ... 59

Configuration ... 60

 Simulink® and LEGO® MINDSTORMS® EV3®

4 | P a g e

Motivation for this workshop
As the industry, technology and society make rapid progress, there is a growing need to teach the next

generation of engineers ever more complex concepts and build intuition quickly, so that they can apply

their knowledge to develop the technology of the future. This calls for hands-on and project-based

learning via low-cost, easy to use hardware and software platforms, to make it easier and fun to teach,

learn and test the engineering ideas.

Simulink has long been the tool of choice of the industry (automotive, aerospace, electronics, etc.), since

it provides a very user-friendly, collaborative and flexible environment for designing, simulating, testing

and eventually implementing, complex, multi-domain systems and their control logic.

Starting 2012, Simulink includes the capability to program low-cost hardware like LEGO® MINDSTORMS®

NXT and EV3, Arduino, Raspberry Pi, and BeagleBoard. This new capability enables students to develop

and test a variety of controls, signal, image and video processing related applications, from within

Simulink.

This workshop is based on Simulink Support Package for LEGO MINDSTORMS EV3. The participants will

have a chance to work through lab modules with examples of obstruction detecting and line following

robots. They will gain practical hands-on experience in building high-level examples themselves.

Additionally, participating faculty members would have a chance to understand the potential for use in

classrooms with students.

At the end of this workshop, the participant will be able to:

 design, simulate and test custom algorithms in Simulink

 implement these algorithms on low-cost embedded hardware such as LEGO MINDSTORMS EV3

without writing any C-code

 see how easy it is to program low-cost hardware with Simulink

Getting started
If you are new to MATLAB®, Simulink or Simulink Support Packages, take a look at the following

introductory material to get started:

 To learn more about MATLAB and Simulink, check out interactive tutorials at:

http://www.mathworks.com/academia/student_center/tutorials/

 For the latest information about LEGO MINDSTORMS NXT Support from Simulink, see:

http://www.mathworks.com/hardware-support/lego-mindstorms-ev3-simulink.html

 Supported hardware for project based learning:

http://www.mathworks.com/academia/hardware-resources/

http://www.mathworks.com/academia/student_center/tutorials/
http://www.mathworks.com/hardware-support/lego-mindstorms-ev3-simulink.html
http://www.mathworks.com/academia/hardware-resources/

 Simulink® and LEGO® MINDSTORMS® EV3®

5 | P a g e

How to use and work with this manual

I1. Workshop run-through options
While working through this manual, there are several entry points that you can choose from.

 To understand manual notation, we recommend reviewing intro sections I1 and I2.

 Depending on your Simulink skills level, you might start with example problem P0.1, or with the

first self-constructed model P1.2.

 Reference material for frequently used tasks is listed in Appendices 1 and 2 for your convenience.

* Start at the section relevant to your Simulink experience level:

Section Focus Level Recommend Experience

Project 0 Introduction to Simulink Beginner None
Project 1.1, 1.2 Intro to programming EV3 with

Simulink
Beginner None

Project 1.3, 1.4 Designing and implementing
intelligent behavior with Simulink

Intermediate Simulink

Project 1.4 Remote control of EV3 from
Simulink

Intermediate Simulink, SSP* for EV3

Project 2.1, 2.2 Designing complex behavior Intermediate Simulink, SSP for EV3,
knowledge of controls

Project 2.3 Using MATLAB code in Simulink
models

Intermediate Simulink, SSP for EV3,
Basic Control Theory

Project 2.4 State based system design with
Simulink

Advanced Simulink, SSP for EV3,
Basic State Machines

Optional Project 1 Plant Modeling and Parameter
Tuning

Advanced Physical Modeling

Optional Project 2 Controller Design and
Optimization

Advanced Feedback controller
design

Optional Project 3 Event-driven System Design Advanced State-machines

* SSP = Simulink Support Package

I2. Notation and formatting
 All required information is formatted as standard text on white background.

 Important information is highlighted with a grey background.

 Buttons on the brick and in Simulink are displayed as such or bracketed, e.g., [OK] for the OK

button or [Deploy to Hardware].

 Menu navigation in Simulink is shown as a sequence,

e.g., Tools > Run on Target Hardware > Prepare to Run

 MATLAB code to be run / copied, is included in the document as below:

xlabel('Time [sec]');

 Simulink® and LEGO® MINDSTORMS® EV3®

6 | P a g e

Project 0: Getting Familiar with Simulink

Simulink
Simulink® is a block diagram environment for multi-domain simulation and Model-Based Design. It

supports system-level design, simulation, automatic code generation, continuous test and verification of

embedded systems. Simulink provides a graphical editor, customizable block libraries, and solvers for

modeling and simulating dynamic systems. It is integrated with MATLAB®, enabling you to incorporate

MATLAB algorithms into models and export simulation results to MATLAB for further analysis.

Key Features:

 Graphical editor for building and managing hierarchical block diagrams

 Libraries of predefined blocks for modeling continuous-time and discrete-time systems

 Simulation engine with fixed-step and variable-step ODE solvers

 Scopes and data displays for viewing simulation results

 Project and data management tools for managing model files and data

 Model analysis tools for refining model architecture and increasing simulation speed

 MATLAB Function block for importing MATLAB algorithms into models

 Legacy Code Tool for importing C and C++ code into models

With the help of code generation products like Simulink Coder and Embedded Coder, design logic in

Simulink models can also be converted to C-code optimized for specific embedded platforms.

Simulink Library Browser and Simulink Models
To get started with Simulink, launch the Simulink Library Browser. Click on the Simulink Library Browser

button on the Home Tab of MATLAB Desktop, or type simulink at the MATLAB command prompt.

The Simulink Library Browser is a collection of high level blocks

that you can use to create a block-diagram representation of

the system you are trying to design. From a different

perspective, these blocks allow you to access or generate, apply

algorithms and visualize or save the processed data or

information, which flows through the system.

Once the Simulink Library Browser launches, you will see a

window like Figure 2 below. Depending on the products included in the MATLAB installation, you will see

some or all of the block libraries. In particular, we will work with the Simulink Support Package for LEGO

MINDSTORMS EV3 Hardware, which is highlighted below (Figure 3).

Figure 1: Starting Simulink

 Simulink® and LEGO® MINDSTORMS® EV3®

7 | P a g e

Figure 2: Simulink Library Browser

Figure 3: Simulink Support Package for LEGO MINDSTORMS EV3

 Simulink® and LEGO® MINDSTORMS® EV3®

8 | P a g e

A Simulink Model (Figure 4) represents the high level design of a system or an algorithm. You can create

models by dropping blocks from the Simulink Library. After that, you can run the simulation or deploy it

to the hardware. Figure 4 shows the simulation model of a self-balancing LEGO robot. You can explore

this model from ‘OptPrj2\selfBalancing\EV3_Sim_Balance_Move.slx’ in the workshop folder.

Instructions on how to run this model are specified at the end of the Optional Project 2 section, page 53.

Figure 4: Different parts and simulation of a Simulink model

More on Simulink
If you want to try out some more examples, go to Simulink documentation under:

MATLAB Desktop > Help (Product Documentation) > Simulink > Examples

 Simulink® and LEGO® MINDSTORMS® EV3®

9 | P a g e

Project 1: Explore Simulink and LEGO MINDSTORMS EV3

P1.1 Get Started: Program EV3 Status Light with Simulink

Motivation
At the end of this project you will be able to program an EV3 brick from Simulink.

Objective

 Create first model in Simulink

 Check hardware and software installation

Tasks/Challenge:

 Make Green Status Light on the EV3 brick blink.

Solution
1. Create a Simulink model like the one in Figure 5

2. Deploy it to the EV3 brick over Wi-Fi.

When this Simulink model is deployed to EV3, a constant

input value will be applied to the Status Light, which will

controls its color and blinking.

Steps/Approach:

Create Simulink model

1. Open the Simulink Library Browser

2. Create a new model and save it as blinkLED.slx in the Working directory

3. Find the blocks listed in the table below

4. Drag and drop them into blinkLED.slx window

5. Double click on a block to open its Block Dialog Box

6. Replace/set block properties in the dialog box as listed in the table below

LIBRARY BLOCK PROPERTY SETTING/VALUE

Simulink > Sources Constant Constant value: 4

Simulink Support Package
for LEGO MINDSTORMS EV3
Hardware

Status Light NA NA

Figure 5: Project 1.1: Blink LED

 Simulink® and LEGO® MINDSTORMS® EV3®

10 | P a g e

Figure 6: Constant Block Parameter

Prepare Model for Deployment to EV3 Brick

Figure 9: Set EV3 IP Address

To find the IP Address of the EV3 Brick, on the brick, go to:

a. Settings Tab > Brick Info > IP Address OR

b. Setting Tab > WiFi > [Click] on the network to which the brick is connected

* Note that the IP Address of the EV3 Brick might change every time it is connected to the network

Figure 8: Prepare to run
Figure 7: Select target hardware

 Simulink® and LEGO® MINDSTORMS® EV3®

11 | P a g e

Deploy Simulink Model to EV3 Brick

To deploy the Simulink model to EV3 Brick, just click on the

‘Deploy to Hardware’ button. Figure below shows what it looks

like.

Observe

 The green status lights should start blinking

Next Steps

 Use different integer values in the Constant block and see how the Status Lights change color or

behavior

 For detailed steps on getting started with Simulink Support Package for LEGO EV3, refer to the

following tutorials on MathWorks website:

 Getting Started with LEGO® MINDSTORMS® EV3™ Hardware:

http://www.mathworks.com/help/legomindstormsev3/examples/getting-started-with-

lego-mindstorms-ev3-hardware.html
 Communicating with LEGO® MINDSTORMS® EV3™ Hardware:

http://www.mathworks.com/help/legomindstormsev3/examples/communicating-with-

lego-mindstorms-ev3-hardware.html

Figure 10: Deploy Simulink model to EV3

http://www.mathworks.com/help/legomindstormsev3/examples/getting-started-with-lego-mindstorms-ev3-hardware.html
http://www.mathworks.com/help/legomindstormsev3/examples/getting-started-with-lego-mindstorms-ev3-hardware.html
http://www.mathworks.com/help/legomindstormsev3/examples/communicating-with-lego-mindstorms-ev3-hardware.html
http://www.mathworks.com/help/legomindstormsev3/examples/communicating-with-lego-mindstorms-ev3-hardware.html

 Simulink® and LEGO® MINDSTORMS® EV3®

12 | P a g e

If you are curious…
Q1. How do I test Wi-Fi connection of my PC with the EV3 Brick? (See Appendix 2 for more details)

A1. To test Wi-Fi connection, run the following command at the MATLAB Command Prompt with current

IP Address noted from Brick Info.
>> h = legoev3('xxx.xxx.xxx.xxx')

If an EV3 Brick is found, you will get a valid handle H to the EV3 Brick, which will allow you to interact with

the Brick programmatically.
h =

 legoev3 with properties:

 ipAddress: 'xxx.xxx.xxx.xxx'

Q2. What happens when the ‘Deploy to Hardware’ button is clicked?

A2. Simulink does the following for you:

 Check algorithm and model integrity – connections, block-settings, settings, data-types, etc.

 Automatically convert model to C-code and use appropriate drivers to create connections to

sensors and actuators

 Cross-compile the code to run on EV3 Brick – which is running Linux

 Download compiled code to the brick

 Start the model on the brick

If you observe the bottom left corner of the Simulink model, you will be able to see the following messages

being displayed:

Figure 11: Steps that a Simulink model goes through when deploying to hardware

Q3. How do I stop a model running on the brick?

A3. To stop a deployed model running on the brick, you can do one of the

following:

1. On the brick: Press the ‘Back’ button on the brick

2. From MATLAB: Call the stopModel method of the LEGOEV3

object, and specify the name of the model that is running. E.g.,
>> h.stopModel('blinkLED')

ans =

 0

Q4: How do I start a previously deployed model?

A4. On the EV3 Brick:

1. Navigate to Folders (second tab) > mw folder

2. Use UP and DOWN buttons to select the model that you want to start

3. Click on the center button to start the model

Figure 12: EV3 Buttons

 Simulink® and LEGO® MINDSTORMS® EV3®

13 | P a g e

P1.2 Work with EV3 I/O: Access and Display EV3 Sensor Value

Motivation
At the end of this project you will be able to access and use EV3 sensor readings. In the next few

projects, readings from the Ultrasonic and Light Sensors will be used to develop a line-following,

collision-avoiding robot.

Objective

 Calibrate Ultrasonic and Color Sensor

Task/Challenge

 Display Ultrasonic/Color Sensor value on the brick’s

LCD

Solution

 Build the following Simulink model

 Deploy model to Brick

 Observe sensor values under different distance and

lighting conditions

When this Simulink model is deployed to EV3, the reading of

the Ultrasonic distance sensor will be displayed on the LCD of

EV3 Brick.

Steps/Approach

Create a Simulink Model

1. Create a new Simulink model and save it as displaySensorReading.slx in Prj1/Work folder.

2. Use the blocks, and appropriate settings, shown in the table below to fill in the empty model. The

finished model should look like the one in the figure above.

LIBRARY BLOCK PROPERTY SETTING/VALUE

Simulink Support Package
for LEGO MINDSTORMS EV3
Hardware

Ultrasonic Sensor EV3 brick input port Check hardware

Display
Label
Row

As necessary
As necessary

Figure 13: Working with EV3 I/O

 Simulink® and LEGO® MINDSTORMS® EV3®

14 | P a g e

Figure 14: Simulink model block parameters for P1.2

Prepare model for deployment to EV3 brick

Follow the steps in P1.1

Deploy Simulink Model to EV3 Brick

Follow the steps in P1.1

Observe

 Observe distance value displayed on EV3 LCD when an object is placed at different distances in

front of it.

Next Steps

a. Replace the Ultrasonic block with the Color Sensor block

b. Change ‘Mode’ to ‘Reflected Light Intensity’

c. Observe and note down sensor reading when held over light and dark objects – these readings

will be needed for the line-following robot.

If you are curious…

Q1. How do I add comments to a Simulink model?

A1. To add a comment to a Simulink model, just double-click anywhere inside the model. This will create

a text annotation where you can type in and format text.

Q2. How do I change the name of a block in a Simulink model?

A2. When you drag a new block into a Simulink model, it will have the default name displayed just under

the block. Click or double-click on that name to make it editable.

 Simulink® and LEGO® MINDSTORMS® EV3®

15 | P a g e

P1.3 Model, Test and Implement Collision Avoidance Behavior

Motivation
At the end of this project you will be able to model, test and simulate collision-avoidance logic in

Simulink, all before deploying it on the EV3 brick. This will be used be used as part of a subsequent

project.

Objective

 Make the robot intelligent so it avoids colliding with obstructions.

Tasks/Challenge

 Make the robot stop if it’s too close to an object in front

Solution

1. Design intelligent behavior

2. Simulate and test the behavior

3. Prepare model for implementing on the

robot. Final model should look like the one

in the figure below.

4. Deploy model to robot

When this Simulink model is deployed to the EV3

Brick, the reading of Ultrasonic distance sensor

will be compared to a threshold value. If the value

is above the set threshold, the robot will move,

otherwise the robot stops, and avoids colliding

with objects in front of it.

Steps/Approach

Design and Simulate Intelligent Behavior in Simulink

1. Open the model Prj1/Work/collAvoidLogic.slx

2. Click on the green RUN button and observe the Final Robot Speed

3. Fill in the following table, and confirm that the logic will work:

Actual
Distance

Threshold Set Speed
Final Robot

Speed

10 20 35
25 20 35

30 50 35

65 50 35

Prepare model for deployment to EV3 Brick

1. Replace the ‘Actual Distance’ and ‘Final Robot Speed’ blocks by the ‘Ultrasonic Sensor’ and two

‘Motor’ blocks respectively. See details in the table below.

2. Save the modified model as collAvoidDeploy.slx. It should look like the model in the figure 15

below.

Figure 15: Collision avoidance logic

 Simulink® and LEGO® MINDSTORMS® EV3®

16 | P a g e

LIBRARY BLOCK PROPERTY SETTING/VALUE
Simulink Support Package
for LEGO MINDSTORMS EV3
Hardware

Ultrasonic Sensor EV3 brick input port Check hardware

Motor EV3 brick output port Check hardware

3. Following the same steps as in P1.1,

change the Simulink model settings

to choose EV3 as the target

hardware, and supply its IP Address.

Deploy Simulink Model to EV3 Brick

Follow the steps in P1.1

Observe

1. Let the robot run on the floor

2. Put an obstruction in front of it and

make sure it stops

3. If the obstruction is removed, the

robot starts moving again

Next Steps

1. Change threshold value and re-deploy the model

2. Repeat step 1 above, till the robot stops within 10-15 cm of the obstruction. Try the following

values:

Actual
Distance

Threshold Set Speed
Robot Behavior
(Static/Moving)

10 20 35
25 20 35

30 50 35

65 50 35

If you are curious…

Q1. Why do I need to change ‘Threshold’ and ‘Set Speed’ values?

A1. For a desired performance and response from the robot, say if the robot needs to stop between 10-

15 cm of the obstruction, there will be an optimal combination of the values of ‘Threshold’ and ‘Set Speed’.

Q2. Does this have any practical use?

A2. Yes. To achieve a desired system response, the parameters governing the behavior of the system have

to be “tuned”. This kind of parameter tuning is needed for the optimal performance of every system or

product being designed, from automobile and plane engines, to washing machines and toasters.

Depending on the product and its complexity, this can be a manual or automated process.

Figure 16: Collision avoidance deployed model

 Simulink® and LEGO® MINDSTORMS® EV3®

17 | P a g e

P1.4 Control interactively: Speed and Steering Control

Motivation
At the end of this project, you will be able to change control parameters, while the application is running

on the robot. The ability to interactively tune and optimize system design while working with hardware

is used by engineers in industry. Finally, in Project 2, you will use this technique to optimize the

performance of the line-following robot.

Objective

 Interactively explore steering capabilities of the robot

Tasks/Challenge

While the robot is running,

 Change robot’s speed

 Steer the robot

Solution

 Open the supplied

Prj1/Work/speedSteerControl.slx model

 Run speedSteerControl.slx model in

External Mode

 Change Nominal Speed and Differential

values to change speed, steer and

explore turning radius for robot

When this Simulink model is deployed to EV3

Brick, you will be able to change the robot’s

linear speed by changing the ‘Nominal Speed’

value, and make it turn by applying a non-zero ‘Differential’.

Steps/Approach

Create a Simulink model

Open the supplied speedSteerControl.slx model:

Prepare model for running on EV3

1. Ensure that EV3 is selected and correct IP

address is provided under Tools > Run on

Target Hardware > Options

2. In the main model window, set Simulation

stop time to inf in the edit box, and

Simulation Mode to External, from the

drop-down menu

* External Mode (Figure 18) allows you to

run your model on the EV3, while still using Simulink on your host computer as an interface to

interact with your model. This allows for live parameter tuning – you do not need to stop, edit

Figure 17: Robot speed and steering control

Figure 18: Setup for External Mode

 Simulink® and LEGO® MINDSTORMS® EV3®

18 | P a g e

and restart the model. You just change the parameter (e.g. value in Nominal Speed block in Figure

17) and the parameter is automatically passed to the EV3 which uses the new parameter without

pausing its operation. External Mode also allows you to log and view data while using Simulink

window.

Note: Remember when using External Mode, you need to use the RUN button to deploy the

model, and the STOP button to stop the model (Figure 19).

Note: If your model stops working after 10 seconds, you may have forgotten to adjust the Stop

time in the model window (Figure 18).

Run model in External Mode

 Click on the Run button to deploy the model to EV3 Brick

 Click on the Stop button to stop the model execution on the

brick

Observe

1. In the bottom left corner of the model, observe the following

messages:

Figure 20: Simulink messages for External Mode

2. Also observe that a Windows

System Prompt opens up – this

indicates that a connection has

been established:

Figure 21: Message on system prompt when initiating External Mode

Figure 19: Running and stopping model
in External Mode

 Simulink® and LEGO® MINDSTORMS® EV3®

19 | P a g e

3. Once the model starts on the robot, a message

is displayed:

Next Steps

1. Make the robot go straight

2. Make the robot turn left or right (or right)

3. Change turning radius of robot

4. Try to make the robot follow the supplied track

If you are curious…

Q1. What is External Mode?

A1. When you are developing algorithms, it is often necessary to determine appropriate values of critical

algorithm parameters in iterative fashion. Simulink’s External mode feature enables you to accelerate the

process by letting you change certain parameter values while the model is running on target hardware,

without stopping the model. When you change parameter values from within Simulink, the modified

parameter values are communicated to the target hardware immediately. The effects of the parameters

tuning activity may be monitored by viewing algorithm signals on scopes or displays in Simulink.

Figure 22: Message on EV3 LCD when running a
model

 Simulink® and LEGO® MINDSTORMS® EV3®

20 | P a g e

Project 2: Complex System Design with Simulink

P2.1 Line Following Robot

Motivation
At the end of this project you will be able to implement a simple line-following robot, using a feedback

controller based on readings from the EV3 Light Sensor. With the help of External Mode operation, you

will also be able to change controller parameters in order to tune the robot’s motion. The controller

parameter values will be needed in the next project for the line-following, collision-avoiding robot.

Objective:

 Make the robot automatically follow a line

Tasks/Challenge:

1. Create a feedback loop based on light sensor value

2. Automatically steer robot based on light sensor readings

Solution:

1. Open the supplied Prj2/Work/basicLineFollowing.slx model

2. Interactively tune controller parameters to make the robot follow the line

When this Simulink model is deployed on the EV3 Brick, robot runs in a proportional feedback control

loop. Any deviation in light intensity value from the threshold creates a speed differential for the

wheels, and makes the robot turn. Thus enabling it to follow a curved line.

Steps/Approach

Start from a supplied Simulink model

Open the supplied Prj2/Work/basicLineFollowing.slx model

Figure 23: Basic Line Following

 Simulink® and LEGO® MINDSTORMS® EV3®

21 | P a g e

Prepare and run model in External Mode

Follow steps outlined in P1.4

Tune controller parameters

While running the Simulink model in External Mode, tune the following parameters

 Light Intensity Threshold

 Controller Gain

 Nominal Speed

A good line following robot:

 Should be able to go around the track in 20 seconds

 Should not oscillate too much

Next Steps

Note down the following values needed for a satisfactory line-following behavior. These will be needed in

the projects to follow:

Parameter Value

Light Intensity Threshold
Controller Gain

Nominal Speed

 Simulink® and LEGO® MINDSTORMS® EV3®

22 | P a g e

P2.2 Line-Following and Collision-Avoiding Robot – With Base Simulink Blocks

Motivation
At the end of this project, you will be able to easily combine designs from multiple models into a single

Simulink model. This makes it easy to distribute system design tasks, and collaborate in a team

environment. The Simulink model at the end of this project will contain the design for Line-Following

and Collision-Avoiding Robot.

Objective:

 Make the robot follow a line and also avoid collision with objects on the track

Tasks/Challenge

 Combine the line-following and collision-avoidance logic developed earlier

Solution

 Put both algorithms in the same Simulink model

When the completed model is deployed to the EV3 robot, it will follow a line, as well as avoid collisions

with objects in front of it.

Steps/Approach

There are several ways to approach this problem. Here is a simple approach to start with.

 The logic for both line-following and collision-avoidance can be put in the same Simulink model

 Based on the readings of the Ultrasonic Sensor, a SWITCH block can be used to determine which

logic is in action

Develop and test behavior with simulation

Open the supplied skeleton model

followAndAvoidLogicBlocks_Start.slx

and make necessary connections to

support the following logic:

a. If there is no obstruction in

front of the robot, the robot

follows a line

b. If there is an obstruction in

front of the robot, the robot

stops

For more information on how to use

the SWITCH block:

 Read the information in the

block’s dialog box

 Click on ‘Help’ button in the

dialog box to open up

documentation on the block Figure 24: Skeleton model for Line Following with Collision Avoidance behavior

 Simulink® and LEGO® MINDSTORMS® EV3®

23 | P a g e

Prepare model for deployment to EV3 brick

Make appropriate block substitutions, and changes to model parameters in order to implement the new

logic on the EV3 brick.

The final model should look like this:

Figure 25: Completed line following, collision avoidance behavior

 Simulink® and LEGO® MINDSTORMS® EV3®

24 | P a g e

P2.3 Line-Following and Collision-Avoiding Robot – With User-Defined MATLAB

Function Block

Motivation

At the end of this project, you will know how to use the MATLAB Function Block to include MATLAB code

inside a Simulink model. Using the MATLAB Function Block is a programmatic approach which

complements the block-diagram based approach in Simulink.

Objective:

 Use programmatic approach to design and implement intelligent behavior

Task

 Use MATLAB code to implement the line-following, collision-avoidance

Solution

 Use MATLAB Function block in a Simulink model

Steps/Approach

Create Simulink model

1. Open the supplied Prj2/Work/followAndAvoidMLFcnLogic_Start.slx model

Figure 26: Using MATLAB code in Simulink model

2. Add the MATLAB Function block from Simulink > User Defined Function library to the model

 Simulink® and LEGO® MINDSTORMS® EV3®

25 | P a g e

3. Double click on the block to open the code editor, and type in the following MATLAB Code

function [leftMotor, rightMotor] = control(distVal, distThresh,

baseSpeed, gain, setpoint, sensedLight)

%#codegen

if distVal > distThresh % Compare obstruction distance to threshold

 err = sensedLight - setpoint; % Line following logic

 leftMotor = baseSpeed - gain*err;

 rightMotor = baseSpeed + gain*err;

else

 leftMotor = uint8(0); % Collision avoidance logic

 rightMotor = uint8(0);

end

4. Choose appropriate values for Threshold, Nominal Speed, Controller Gain and Setpoint.

5. After saving the model and making appropriate connections, the final model should look like the

one below:

Figure 27: MATLAB Function block in Simulink model

 Simulink® and LEGO® MINDSTORMS® EV3®

26 | P a g e

Prepare the model for deployment to the EV3 Brick

 Make necessary changes so that the model can run on the EV3 brick in External Mode

Observe

 Confirm that the behavior of the robot is exactly same as before.

If you are curious…

Q1. What is the meaning of %#codegen in the code inside MATLAB Function block

A1. The presence of this keyword tells MATLAB that the code in the current file will be translated to C-

code. The presence of this keyword alerts the MATLAB Code Analyzer about the intended use of the file,

and initiates automatic checks to ensure integrity of the automatically generated C-code.

Q2. Which MATLAB functions can be translated to C-code?

A2. For a list of functions that can be used in MATLAB Function block, see:

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-

list.html

Q3. Can I see the C-code generated for a Simulink model?

A3. Yes. If you have access to the Simulink Coder and Embedded Coder products, you can see the C-code

generated from a Simulink model.

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html

 Simulink® and LEGO® MINDSTORMS® EV3®

27 | P a g e

P2.4 Line-Following and Collision-Avoiding Robot – Event-driven modeling

Motivation
At the end of this project you will be able to use the MATLAB Function Block in a Simulink model to

develop control logic for an event-driven system.

Many systems operate in different modes of operation, or states that require different parts of the

system to react. For example, a car with automatic transmission gets data from the shift lever, and uses

logic to select the mode of operation, which then controls the motion – forward, reverse or parking.

For this event-driven system, we will use a state machine which is a model of a reactive system. This

model defines a finite set of states and behaviors and how the system transitions from one state to

another when certain conditions are true.

Objective:

 Use a programmatic approach to building control logic using finite-state machines and allowing

for event-driven state transitions.

Task

 Use MATLAB code to implement line-following, collision-avoidance and programming a touch

sensor to act as an on-off switch, allowing the robot to transitions between the following states

based on specific events:

o State 0: Stop - action triggered by a touch sensor.

o State 1: Forward motion with line-following in the absence of an obstacle – action

triggered by the touch sensor and the absence of an obstacle.

o State 2: Reverse motion – triggered by the presence of an obstacle.

Solution

 Use MATLAB Function block in a Simulink model and persistent variables to define and allow for

state transitions based on sensor inputs.

Steps/Approach

Create Simulink model

1. Open the supplied Prj2/Work/followAndAvoidBlocksDeployMLFcnEvent_Start.slx. See Figure 27.

2. Add the MATLAB Function block from Simulink > User Defined Function library to the model

3. Double click on the block to open the code editor, and type in the MATLAB Code on Page 28.

4. Make desired changes to parameters governing the controller behavior – distance thresholds for

obstacle avoidance and response to obstacle – if necessary.

5. Choose appropriate values for Threshold, Average Speed, Controller Gain and Setpoint.

6. After saving the model and making appropriate connections, the final model should look like the

one in Figure 28.

 Simulink® and LEGO® MINDSTORMS® EV3®

28 | P a g e

Figure 28Using MATLAB code in Simulink model

Figure 29: MATLAB Function block in Simulink model

 Simulink® and LEGO® MINDSTORMS® EV3®

29 | P a g e

function [rightMotorSpeed, leftMotorSpeed, currentState] =

control(touchVal, distVal, distThresh, baseSpeed, sensedLightError,

gain)

%#codegen

% Initialize variables and set default values

persistent state

persistent status

if isempty(state), state = 0; end;

if isempty(status), status = 0; end;

% Convert datatype for calculations

sensedLightError = double(sensedLightError);

if status == 0 && state == 0 && touchVal == 1

 status = 1;

elseif status == 1 && touchVal == 1

 status = 0;

end

% Use the Touch sensor to trigger action

if status == 1 && touchVal == 0 && distVal >= 2*distThresh

 state = 1; % Start/Move Forward

elseif status == 1 && touchVal == 0 && distVal < distThresh

 state = 2; % Move Reverse

else

 state = 0;

end

currentState = state;

% Choose appropriate system state

switch state

 case 0 % Stop

 desiredSpeed = 0;

 desiredRotationRate = 0;

 case 1 % Move Forward

 desiredSpeed = baseSpeed;

 desiredRotationRate = gain*sensedLightError;

 case 2 % Move reverse

 desiredSpeed = -baseSpeed/2;

 desiredRotationRate = 0;

 otherwise % Do nothing

 desiredSpeed = 0;

 desiredRotationRate = 0;

end;

% Calculate motor speeds

rightMotorSpeed = desiredSpeed + desiredRotationRate;

leftMotorSpeed = desiredSpeed - desiredRotationRate;

 Simulink® and LEGO® MINDSTORMS® EV3®

30 | P a g e

Prepare the model for deployment to the EV3 Brick

 Make necessary changes so that the model can run on the EV3 brick in External Mode.

Observe

 Confirm that the behavior of the robot is similar to the earlier models, with the modified response

to obstacles and the added functionality of a touch sensor acting as a power switch.

 Place an obstacle in the path of the robot (observable by the Ultrasonic Sensor) and observe the

state transitions as indicated by the ‘Current Status’ display block and the corresponding system

behavior.

If you are curious…
Q1. What are persistent variables?

A1. Persistent variables are variables that are local to the function in which they are declared; yet their

values are retained in memory between successive time steps. Persistent variables are similar to global

variables because the MATLAB® software creates permanent storage for both. They differ from global

variables in that persistent variables are known only to the function in which they are declared. This

prevents persistent variables from being changed by other functions or from the MATLAB command line.

Persistent variables retain their values between simulation steps, and thus the same memory location is

accessible throughout the simulation.

Q2. Is there a better way to program state transitions than a MATLAB function block?

A2. Developing complex decision logic triggered by specific events, or event-driven modeling, can be, and

often is, accomplished by writing conventional code. This works well for simple controller behavior, but

as the complexity of control action scales up, writing code in the traditional sense can get very tedious

very quickly, and there are clear advantages that a more visual approach for representing and

programming event-driven transitions provides.

Event-driven modeling, under such a visual framework, is facilitated by Stateflow®, an environment for

defining events and state transitions towards representing complex control action. Stateflow allows for

modeling and simulating combinatorial and sequential decision logic based on state machines and flow

charts. Stateflow lets you combine graphical and tabular representations, including state transition

diagrams, flow charts, state transition tables, and truth tables, to model how your system reacts to events,

time-based conditions, and external input signals. The control logic and dynamic event-driven state

transitions presented in this exercise could be replicated with greater ease and improved controller

behavior visualization using Stateflow, as discussed and demonstrated in Appendix 3.

 Simulink® and LEGO® MINDSTORMS® EV3®

31 | P a g e

Optional Project 1: Plant Modeling for LEGO EV3 Robot

OP1.1 Simulation Model of EV3 Robot

Motivation
At the end of this section you will be able to understand robot motion behavior. For e.g. when does the

robot move straight, when does it turn, by what radius etc.

Objective

 Develop a simulation plant model (mathematical model) of EV3 robot assembly

Tasks/Challenge

 Import existing CAD model into Simulink

 Add actuation to the robot wheels and observe robot motion

Solution

1. Import ‘EV3_CAD.xml’ into Simulink

2. Explore supplied model ‘EV3sim_Openloop.slx’, give it various inputs to see robot move around

Steps/Approach

The files required for this section are in the ‘OptPrj1\plantModeling’ folder.

Import the XML file into Simulink

1. Execute the following MATLAB command to import the XML file into Simulink.
>> smimport('EV3_CAD.xml')

‘EV3_CAD.slx’ will automatically be generated and looks similar to Figure 30.

Figure 30 – Imported SimMechanics Model from the CAD model

 Simulink® and LEGO® MINDSTORMS® EV3®

32 | P a g e

Importing CAD model into Simulink is a 2 step process.

 An add-on software called SimMechanics Link automatically exports CAD models from

supported CAD software to the XML format.

 We then use the SMIMPORT command to bring it into Simulink. The generated Simulink model

uses blocks from the SimMechanics Library (as we did above).

Find more information about these at the following links:

 SimMechanics: http://www.mathworks.com/products/simmechanics/

 SimMechanics Link: http://www.mathworks.com/help/physmod/smlink/getting-started-with-

simmechanics-link.html

2. Select Simulation > Update Diagram.

The updated diagram provides the simulation with the results of the latest changes that you have made

to a model. This also brings up the Mechanics

Explorer window that shows the robot

configuration. To show the robot in an

appropriate view convention, make note of

the options in the Mechanics Explorer window

(Figure 30 highlighted in a red box):

3. Choose Y up (XY Front) for ‘View

Convention’

4. Click on the ‘Isometric View’ button to

show the robot in an appropriate view

This model has all the details about the

dynamics of our robot’s mechanical system.

We can use this simulation model to better

understand the robot motion behavior

without going through the exercise of deriving

detailed equations of motion for the robot.

However this model by itself does not do

anything. We need to add some actuation to

the robot which is the next step.

 Figure 31: Mechanics Explorer - Visualization

http://www.mathworks.com/products/simmechanics/
http://www.mathworks.com/help/physmod/smlink/getting-started-with-simmechanics-link.html
http://www.mathworks.com/help/physmod/smlink/getting-started-with-simmechanics-link.html

 Simulink® and LEGO® MINDSTORMS® EV3®

33 | P a g e

Actuate the robot

1. Open the supplied model ‘EV3sim_Openloop.slx’ as shown in Figure 32.

Figure 32 – Open Loop EV3 Robot Simulation Model

2. Explore the ‘Kinematics Subsystem’ by double clicking it. This is shown in Figure 33.

Figure 33 – Kinematics of a Differential Drive Robot

 Simulink® and LEGO® MINDSTORMS® EV3®

34 | P a g e

This subsystem is implemented to actuate the robot center of mass based on the individual wheel

angular velocities. The equations implemented here are the general equations that govern a differential

drive planar robot’s position and heading. Please take a look at the following link for more information

on this topic: http://planning.cs.uiuc.edu/node659.html

3. Double click on the ‘Left Wheel’ and ‘Right Wheel’ subsystems to see what the supplied angular

velocities to the wheels are.

4. Run a simulation and observe the robot moving around in the Mechanics explorer window. Fill

in the following table with wheel angular velocity values so that you can verify robot behavior:

Desired Motion Left Wheel Angular Velocity Right Wheel Angular Velocity

Straight Forward
Rotate counter clockwise with

ZERO turning radius

Rotate clockwise with constant
turning radius (non-zero)

5. Click on the badge as shown in Figure 34 to ‘Look inside mask’ of one of the wheel subsystems

and navigate to either the ‘Left’ or ‘Right’ motor subsystems.

Figure 34 - Look inside mask

You can see that the motor is idealized and motor dynamics are not present. The next section is about

how to develop this motor model in order to obtain a more detailed simulation plant model that can

better capture the real dynamics of the system.

http://planning.cs.uiuc.edu/node659.html

 Simulink® and LEGO® MINDSTORMS® EV3®

35 | P a g e

OP1.2 Motor Modeling for EV3 Plant

Motivation
At the end of this section you will be able to better understand the motor system behavior. This can also

be used later for applications like motor speed control design (refer Optional Project 2).

Objective

 Develop motor simulation model

Tasks/Challenge

 Include motor dynamics based on first principles

Solution

1. Explore ‘Motor Subsystem’ in the supplied model ‘MotorOpenLoop.slx’.

2. Optimize for simulation motor parameters from experimental data

Steps/Approach

The files required for this section are in the ‘OptPrj1\motorModeling’ folder.

Include Motor Dynamics

1. Open the model ‘MotorOpenLoop.slx’. Open the subsystem ‘MotorOpenLoop/Motor

Subsystem’ (Figure 35) to take a look at the motor model.

Figure 35 – Motor Simulation Model

 Simulink® and LEGO® MINDSTORMS® EV3®

36 | P a g e

Here, we are modeling the motor using first principles and implementing it using physical equations.

These are as follows:

)()()(
)(

tiRtvtv
dt

tdi
L emfin - Kirchoff’s law

)()(
)(

tbtT
dt

td
J m

 - Newton’s law

Where,

R, L = Motor equivalent circuit resistance and inductance respectively

J = Moment of Inertia of the rotor

b = Damping coefficient of the rotor

Vin = Input voltage

Vemf = Back emf

Tm = Motor torque

𝑇𝑚(𝑡) = 𝐾𝑚𝑖(𝑡)

𝑣𝑒𝑚𝑓(𝑡) = 𝐾𝑒𝑚𝑓𝜔(𝑡)

2. Simulate the model and examine the ‘Scope’ window to see the measured speed of the motor.

3. Change the different motor parameters in the MATLAB base workspace (J, b, K, R and L) to

understand how these parameters affect the motor behavior physically. Based on this, fill the

following table varying the parameter ‘J’ and all the other parameters set to a value of 1:

Parameter value Steady State achieved in 10
seconds? Yes/No

J = 1

J = 10

Think about why this happens to better understand motor behavior.

Now, we have an initial motor model. However, we still are yet to confirm if this model represents the

real EV3 motor. In the next few sections we are going to obtain experimental data from the EV3 motor,

and then estimate motor parameters by comparing experimental data with the simulation results.

Acquire data

1. Open the model ‘EV3_DataAcquisition.slx’.

This model has sample reference signal in a ‘Signal Builder’ block that actuates the EV3 motor. The

encoder values are then measured and differentiated to calculate the respective angular velocity.

2. Run this model on the EV3 hardware in ‘External Mode’ and acquire data needed for motor

parameters estimation.

3. Once the model has finished running, click on the ‘Process Data’ button (Figure 36) in the

Simulink model and you will see two MATLAB figures with the acquired data that shows the

 Simulink® and LEGO® MINDSTORMS® EV3®

37 | P a g e

estimation and validation data sets. This is also available in the MATLAB workspace as variables

as shown in Figure 36.

Figure 36 - Process Data, MATLAB Workspace – Acquired Data

Clicking on ‘Process Data’ runs a MATLAB script and filters the acquired data for future use.

Now that we have the experimental data, let us compare this with our simulation results and estimate a

good set of parameters that represents our DC motor well.

Estimate Parameters

1. Open the ‘MotorParamModel.slx’ Simulink model.

2. Run the MATLAB script ‘initMotorParams.m’ to initialize all motor parameters to ‘1’.

3. Click on ‘Load Parameter Estimation GUI’ as shown in Figure 37.

Figure 37 - Launch Parameter Estimation

This will open up the graphical interface for parameter estimation.

4. Navigate to the ‘Parameter Estimation’ tab as shown in Figure 38 and click on ‘Start’ to begin

the parameter estimation.

The Parameter Estimation tool automatically runs a non-linear least squares optimization

routine in the background. This routine iterates over different values of the model parameters

(J,K,L,R,b), such that the response of the mathematical model of the motor matches that of the

real EV3 motor. The cost function used is the sum of squared errors between the actual and

simulated responses. Explore the tool to check out the other optimization algorithms and

settings provided.

 Simulink® and LEGO® MINDSTORMS® EV3®

38 | P a g e

Figure 38 - Parameter Estimation Tool – Estimation

5. Once the estimation is finished, navigate to the ‘Parameters’ pane (Figure 38).

Here you can view the estimated parameter values. The final optimized values of these parameters are

now available in the MATLAB workspace as well.

After estimating parameters, it’s a good practice to validate these parameters against a new

experimental dataset.

6. Next, navigate to the ‘Validation’ tab. Click ‘Select Experiments’, check ‘ValidationData’ check

box under ‘Validation’ and click on ‘Validate’ as shown in Figure 39.

 Simulink® and LEGO® MINDSTORMS® EV3®

39 | P a g e

Figure 39 - Parameter Estimation Tool – Validation

So far, we have developed the simulation model of the mechanical system in P3.1 and the motor system

in P3.2. Let us integrate these two systems to get our final simulation model.

 Simulink® and LEGO® MINDSTORMS® EV3®

40 | P a g e

Simulate Final Model

1. Open the model ‘EV3sim_FullModel.slx’.

This model has the motor model already implemented with the EV3 mechanical model as shown in

Figure 40.

Figure 40 - Fully integrated simulation model

2. Note that in ‘EV3sim_FullModel/EV3 Plant Model with Motor’ the motor feeds the speed and

hence position to a mechanical assembly (Figure 40). Also, navigate to ‘EV3sim_FullModel/EV3

Plant Model with Motor/Left Motor Subsystem’ subsystem. This is the same model that we

developed in OP1.2.

 Simulink® and LEGO® MINDSTORMS® EV3®

41 | P a g e

Figure 41 - Motor Subsystems feeding to the Mechanical Assembly

3. Hit the Simulink ‘Run’ button and see the robot move in the Mechanics Explorer window.

4. Also check the ‘Scope’ window to see that the ‘Reference’ speed and the ‘Measured’ speed are

not exactly same. The system in its current state is not able to faithfully track the reference

commands.

Next Steps

Design a controller for the EV3 Robot

If you are curious…
Q1: Are there other ways to model a motor?

A1: There are several other ways to model a motor. In general any system can be modeled using first principles or

a data driven approach. In the first approach, there is a necessity to have knowledge about the physical nature of

the system to put it into equations. This is what we did in the project above fitting parameters in an equation to

real world data. In the second approach, we get input/output data and obtain a simulation model of a generic

structure. For an example of data driven approach execute the following command in MATLAB to see how you can

estimate an ‘n’ order transfer function based on input/output data. You can see in this case, there is no necessity

to know about the physical nature of the system. Based on data, one can just get the I/O relationship of a system.

>>doc tfest

Q2: Why doesn’t the measured speed and reference speed match for the motor model?

A2: The motor model is a dynamic system. In order to faithfully track a reference signal, we need to implement a

closed loop control system. If you are interested in control design, move on to the next project!

 Simulink® and LEGO® MINDSTORMS® EV3®

42 | P a g e

Optional Project 2: Controller Design for LEGO Robot

OP2.1 Design PID Controller for EV3 Robot

Motivation:

At the end of this section you will be able to make the EV3 motors and the robot, accurately track a

desired reference speed.

Objective:

 Design closed-loop controller for EV3

Tasks/Challenge:

 Design and tune a PID controller to track the EV3 desired motor speed.

Solution:

 Tune the controller gains either manually or automatically to design an initial PID controller for

the EV3.

Steps/Approach

The files required for this section are in the ‘OptPrj2\controllerDesign’ folder.

Observe Open-loop Plant behavior

1. Open the ‘EV3_without_control.slx’ model.

This is an open-loop simulation model of the EV3 motor dynamics that you just developed in the

previous chapter.

2. Simulate the model and observe that the actual (measured) motor speed (purple) that drives

the EV3 wheels is different from the desired motor speed (yellow) as seen in the Scope on

Figure 42.

With just open loop control, a constant steady-state error can be observed. Therefore, in order to

accurately track the reference step input, we need to implement a closed loop control system. Also,

having a closed loop control system will help us tackle disturbances better whereas the open loop

will easily fail in that scenario.

 Simulink® and LEGO® MINDSTORMS® EV3®

43 | P a g e

Figure 42 - Reference speed v/s measured speed for the open Loop motor

Design PID Controller

1. Open the ‘EV3_with_PIDcontrol_untuned.slx’.

In this model, observe that we are designing a closed-loop (feedback) PID controller that compares the

actual (measured) speed against the reference (desired) speed. The controller takes the error as input

and commands the motor with appropriate voltage depending on the controller gains (P, I and D).

2. Double-click the PID Controller block.

Looking at the default P, I and D gain values, we observe that it is currently just a Proportional Integral

(PI) controller with gains set to 1.

3. Simulate the model to observe that the system is unstable.

4. Tune the controller gains using one of the following methods:

a) Trial and Error: Manually changing the controller gains to 0.1 yields a stable system.

“Trial and Error” method can be cumbersome if you do not know the exact values of the

controller gains. Therefore, the second method of automatic tuning is easier and preferred over

approach 1.

b) Select the ‘Tune’ button in the PID controller block to automatically tune the controller gains

and design an initial controller for the plant (EV3).

 Simulink® and LEGO® MINDSTORMS® EV3®

44 | P a g e

When the “Tune” button is selected, it brings up the PID Tuner interface (Figure 43) and the following

actions occur:

 The PID Tuner automatically linearizes the plant at the operating point specified by the model

initial conditions. The linearized plant can be of any order and can include any time delays.

 The PID Tuner computes an initial compensator design for the linearized plant model

 The PID Tuner displays the original and the tuned system step responses.

Figure 43 – PID Tuner interface

The PID Tuner interface gives the user the ability to view/update the controller gains by interactively

changing the controller response time/robustness. One can interactively change the slider values for the

response time and transient response in the time domain or loop bandwidth and phase margin in the

frequency domain.

5. Move the slider values to change the gain and observe that the tuned controller gains get

updated every time you change the slider values by selecting the “Show Parameters” button.

Controls engineers typically derive the controller design requirements based on hardware experiments,

prior system knowledge etc.

6. Interactively change the slider values to obtain the following controller requirements for EV3 if

necessary.

Rise time < 0.4 sec

Setting Time ~ 1 sec

Overshoot < 5 %

Gain Margin > 6dB

Phase Margin > 60 deg

 Simulink® and LEGO® MINDSTORMS® EV3®

45 | P a g e

7. Select the ‘Show Parameters’ button on top-right of the PID Tuner (Figure 43) to observe how

the tuned controller parameters and response characteristics (like rise time, overshoot etc.)

compare against the original block parameters. (Figure 44)

Figure 44 – Comparison between tuned parameters and original block parameters

8. Select the “Update Block” button on the top-right of the PID Tuner interface (see Figure 43) to

update the PID Controller block with the tuned controller gains.

9. Fill in the following table with the corresponding controller gains.

 Controller Gains
Proportional (P)

Integral (I)

Derivative (D)

Simulate EV3 Robot Model with Initial Controller

1. Save the previous model as ‘EV3_with_PIDcontrol_myGains.slx’, and simulate the model to see

the effect of the updated control gains.

2. Look at the measured response for the controller designed in the above step. (If the results are

different, refer to ‘EV3_with_PIDcontrol_tuned.slx’ to compare with your model)

The motor tracks the reference step input pretty well as can be seen in the scope (Figure 45).

 Simulink® and LEGO® MINDSTORMS® EV3®

46 | P a g e

Figure 45 – Reference speed v/s measured speed with the tuned controller - Simulation

Test the Controller on the EV3 Hardware

1. Open the model ‘EV3_Controller.slx’ from the current directory.

2. Simulate the model in “External” mode to test the controller algorithm on the EV3 hardware.

Observe that the actual EV3 robot hardware with the controller tracks the step input pretty well (Figure

46). The difference between the performance on the real hardware and our simulation, can be

attributed to our simplistic DC motor simulation model. For e.g. we have not modeled the friction in the

motor. The next logical step would be to add this detail and use our simulation model to get a better

controller.

 Simulink® and LEGO® MINDSTORMS® EV3®

47 | P a g e

Figure 46 – Reference speed v/s measured speed with the tuned controller - Hardware

If you are curious…
Q1: How does the PID Tuner decide the controller gains that it computes automatically?

A1: PID Tuner takes the following objectives into consideration:

Closed-loop stability — Closed-loop system output remains bounded for bounded input.

Adequate performance — Closed-loop system tracks reference changes and suppresses disturbances as

rapidly as possible. The larger the loop bandwidth (the frequency of unity open-loop gain), the faster the

controller responds to changes in the reference or disturbances in the loop.

Adequate robustness — Controller loop design has enough gain margin and phase margin to allow for

modeling errors or variations in system dynamics.

MathWorks® algorithm for tuning PID controllers (based on Åström, K. J. and Hägglund, T. Advanced PID

Control, Research Triangle Park, NC: Instrumentation, Systems, and Automation Society, 2006.) meets

these objectives by tuning the PID gains to achieve a good balance between performance and

robustness. The algorithm designs an initial controller by choosing a bandwidth to achieve that balance,

based upon the open-loop frequency response of your linearized model.

Q2: Is there a way in which I can re-tune the controller at a different operating point?

A2: To set a new operating point for the PID Tuner, there are several methods. For more information on

these methods, please refer the following online documentation page.
http://www.mathworks.com/help/releases/R2015a/slcontrol/ug/tune-at-a-different-operating-point.html

Q3: Is there a way to optimize the controller gains for a desired system step response?

A3: Yes, we can use response optimization techniques to optimize the controller gains for a desired step

response. If you are interested in controller design using response optimization, refer project OP2.2.

http://www.mathworks.com/help/releases/R2015a/slcontrol/ug/tune-at-a-different-operating-point.html

 Simulink® and LEGO® MINDSTORMS® EV3®

48 | P a g e

OP2.2 Fine-tune PID Controller for desired step response

Motivation:
At the end of this section you will be able to design controllers that satisfy specified controller objectives

like desired step response characteristics.

Objective:

 Fine tune the closed-loop controller for EV3 robot using optimization techniques.

Tasks/Challenge:

 Understand design constraints and requirements for the controller performance

 Setting up an optimization routine to determine PID gains needed to meet requirements.

 Explore the different options within the optimization technique

Solution:
1. Run the model ‘EV3_SDO_PID_untuned.slx’ to see the initial response of the system in

simulation

2. Make use of Simulink Design Optimization to specify a controller objective and tune the PID

controller accordingly.

Steps/Approach
The files required for this section are in the ‘OptPrj2\controllerDesign’ folder.

Observe un-optimized closed-loop plant behavior

In our first step, we are going to examine the current performance of the PID controller with default

gains.

1. Open the ‘EV3_SDO_PID_untuned.slx’ model that consists of the closed-loop motor dynamics.

2. Load the .MAT file ‘SDO_Start_Session_part1.mat’.

This MAT file will set-up parameters for the P-I-D controller and plant model.

3. Simulate the model and observe that it takes more than 5 seconds for the wheels to reach the

desired wheel speed. This is showcased in the Figure 46.

Examine the display blocks highlighted in green which show the current P and I gain values. These

values were hand-picked arbitrarily and are not optimal in terms of fast trajectory tracking.

 Simulink® and LEGO® MINDSTORMS® EV3®

49 | P a g e

Figure 46 - Voltage Output and Measured Speed

Examine Desired Response Characteristics

The ‘Check Step Response Characteristics’ block is a way to specify how we want our system response to

behave to ensure it stays within a specified bound.

1. Open up the block ‘Check Step Response Characteristics’ and click the play button. This will run

the simulation again, and examine the plot of the feedback output (Figure 47).

Figure 47 - Examining controller performance versus desired response

Our desired response behavior is depicted by the white back-ground in Figure 47. Our objective is to

tune our controller to ensure that it reaches our desired set-point faster by staying in the white region. If

the response of the system falls outside the white region it may over-shoot too much or track the

desired reference point too slowly. The darkened area in the plot depict “forbidden” zones. Our desired

 Simulink® and LEGO® MINDSTORMS® EV3®

50 | P a g e

response must not enter these areas in order to achieve fast settling times and reasonable over-shoot

values.

2. Examine that with the current PID values have clearly failed to meet our performance objectives

as shown in Figure 47. The actual output passes through the darkened region and is out of

bounds.

Using Simulink Design Optimization to find optimal PID Gains

In order to meet our desired response characteristics, we can employ Simulink Design Optimization

(SDO) to find the set of gains which will meet our objectives outlined in the ‘Check Step Response

Characteristics’ and ‘Constrain Voltage’ block. The ‘Constrain Voltage’ block is used to limit voltage to be

within +-5 Volts. Using SDO offers a much more automated method of fine tuning a control system than

tuning values by hand manually.

1. With the ‘EV3_SDO_PID_untuned.slx’ model opened, go to Analysis > Response Optimization

2. Click on Open Session and then select Open from file. Load the ‘SDO_Start_Session_part2’ MAT

file. This will load an SDO session which will set up the variables to tune in the model for the

optimization process.

3. Examine the current PI values which will act as the independent variables in the optimization.

This can be viewed by first clicking on the Response Optimization tab. Click on the Pencil Icon to

bring up the design variables menu. This is shown in Figure 48.

Figure 48 - PID values as design variables

Before starting the optimization, we want to visualize the output when the automated tuning is in

progress.

4. Click on the ‘Time plot 1’ tab to choose the step response characteristics to view. This is shown

in Figure 49.

 Simulink® and LEGO® MINDSTORMS® EV3®

51 | P a g e

Figure 49 – Choose time plot

5. Now, click on the green arrow Optimize button to begin the optimization process. Examine how

the controller response changes in each iteration of the optimization. Also, examine the model

as the Kp and Ki values in the display blocks change.

The optimization routine is running the model over many iterations and tuning each PID gain while being

constrained to the specifications outlined in the constrain blocks.

The final response should look like the bold line depicted in Figure 50. The lighter shades belong to the

responses during the various iterations of the optimization routine.

Figure 50 - Result of Simulink Design Optimization

 Simulink® and LEGO® MINDSTORMS® EV3®

52 | P a g e

Using Simulink Design Optimization to find optimal PID Gains

Providing that you have completed the SDO steps above, now try running the same control system on

the hardware.

1. Open the model ‘EV3_Controller.slx’.

2. Replace the PID controller block in the model with the PID controller block from

‘EV3_SDO_PID_untuned.slx’. Follow the same procedure as before to run the model on the

hardware to see the effect of the new gains.

If you are curious…

Q1: What kind optimization routine is being used?

A1: By default, the Gradient Descent method is selected and the algorithm is set to Sequential

Quadratic Programming. This is specified under the Optimization Options tab in the SDO options. To

learn more about what each method and algorithm does, please consult this documentation.
http://www.mathworks.com/help/sldo/ug/optimization-options.html#brztydr-1

Q2: How can I speed up the optimization technique?

A2: The speed of the optimization routine will depend on the complexity of the model since each

iteration of the optimization will execute the model to examine the output. Simulink Design

Optimization offers the ability to use the Parallel Computing Toolbox to run multiple iterations amongst

different CPU cores (called “Workers”). This option can be found under Options and clicking on the

Parallel Options tab. To read more about this process, please consult this documentation.

http://www.mathworks.com/help/sldo/ug/how-to-use-parallel-computing-gui_bs2zebr-1.html#brztxje-10

Q3: Is there a more advanced control problem that can be experienced with LEGO EV3, MATLAB and

Simulink?

A3: Given that the LEGO EV3 has so many different sensors, the possibilities are potentially limitless. For

e.g. explore the self-balancing robot with the following steps:

With the help of a workshop facilitator, change the robot to a simpler self-balancing configuration

Navigate to the ‘selfBalancing’ folder and run the following scripts:

EV3_Plant: This script generates the state space model of the EV3 robot in a self-balancing

configuration. This plant is based on the NXTGWay model as described in ‘NXTway plant model.pdf’

EV3_Controller: This script generates an LQR controller for self-balancing.

Simulate the model ‘EV3_Sim_Balance_Move.slx’ and take a look at the scope window output.

Understand what the simulation output means physically with respect to the robot stability.

‘Deploy’ the model ‘EV3_HW_Balance_Move.slx’ to see the LEGO EV3 hardware self-balance with the

same controller!

NOTE: Be sure to keep the robot in a relatively upright position before the model starts running. The

controller works only around this vertical equilibrium because of the way in which we have modeled

the simulation model and hence also designed the controller with that assumption.

http://www.mathworks.com/help/sldo/ug/optimization-options.html#brztydr-1
http://www.mathworks.com/help/sldo/ug/how-to-use-parallel-computing-gui_bs2zebr-1.html#brztxje-10

 Simulink® and LEGO® MINDSTORMS® EV3®

53 | P a g e

Optional Project 3: Event-driven modeling using Stateflow
Motivation
At the end of this project you will be able to use a Stateflow Chart in a Simulink model to develop

control logic for an event-driven system. This project provides an alternative workflow to developing

event-driven control algorithms than the one discussed in Section 2.4.

Vehicle transmission systems, flight controllers for airplanes and space vehicles, and control algorithms

for robotic and autonomous systems are some examples of dynamic systems that transition between a

finite set of states, with transitions being triggered by events. MATLAB allows for defining and

developing an event-driven controller, as is demonstrated in Section 2.4, but as the complexity of the

states and event-triggered transitions increases, Stateflow provides a more natural and intuitive

environment for developing such controllers while abstracting away much of the rigors of manually

programming event triggers and state transitions. In the ‘External Mode’ in Simulink, Stateflow also

allows for visualizing event triggers and state transitions in near real-time as the controller is

implemented on the embedded platform, providing clearer insights into controller performance for

optimized design changes.

Similar to Section 2.4, we will use a state machine which is a model of a reactive system. This model

defines a finite set of states and behaviors and how the system transitions from one state to another

when certain conditions are true. The states and transitions are defined using a Stateflow chart within

the Simulink model.

Objective:

 Use Stateflow® to building control logic using finite-state machines and allowing for event-

driven state transitions, similar to Section 2.4

Task

 Use Stateflow to implement line-following, collision-avoidance and programming a touch sensor

to act as an on-off switch, allowing the robot to transitions between the following states based

on specific events:

o State 0: Stop - action triggered by a touch sensor.

o State 1: Forward motion with line-following in the absence of an obstacle – action

triggered by the touch sensor and the absence of an obstacle.

o State 2: Reverse motion – triggered by the presence of an obstacle.

Solution
As we start to build more complex controller logic and define certain actions triggered in response to

specific events as identified using sensor systems, programming event logic and defining state

transitions in MATLAB can very quickly get very daunting. Stateflow®, a visual environment designed

specifically for event-driven modeling, abstracts away much of the complexity involved in

programmatically developing complex logic design for finite-state machines, and can significantly help

speed up the prototyping and deployment of controllers, especially when the complexity of the control

logic scales up significantly.

 Simulink® and LEGO® MINDSTORMS® EV3®

54 | P a g e

Stateflow® is an environment for modeling and simulating combinatorial and sequential decision logic

based on state machines and flow charts. Stateflow lets you combine graphical and tabular

representations, including state transition diagrams, flow charts, state transition tables, and truth tables,

to model how your system reacts to events, time-based conditions, and external input signals. Further

details on Stateflow can be found at the following URL:

http://www.mathworks.com/products/stateflow/

A webinar on ‘Control Logic Made Easy with Stateflow’ can be accessed here:

http://www.mathworks.com/videos/control-logic-made-easy-with-stateflow-81914.html

Steps/Approach

Create Simulink model

6. Open the supplied OptPrj3/followAndAvoidBlocksDeployStateFlowEvent.slx

Figure 47: Using Stateflow in Simulink model

7. The model should be very similar to the one used in Section P2.4 in functionality. Observe the

state transitions and control logic within the Stateflow block and develop familiarity with

Stateflow features, state and state transition definitions.

8. Double click on the block to open the Stateflow model. You should see something similar to

Figure 28.

http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/videos/control-logic-made-easy-with-stateflow-81914.html

 Simulink® and LEGO® MINDSTORMS® EV3®

55 | P a g e

9. Observe the states and events that trigger state transitions, and make necessary adjustments to
the control logic.

10. Make desired changes to parameters governing the controller behavior – distance thresholds for

obstacle avoidance and response to obstacle, if necessary.

11. Choose appropriate values for Threshold, Average Speed, Controller Gain and Setpoint.

Figure 48: MATLAB Function block in Simulink model

 Simulink® and LEGO® MINDSTORMS® EV3®

56 | P a g e

Prepare the model for deployment to the EV3 Brick

 Make necessary changes so that the model can run on the EV3 brick in External Mode

Observe

 Confirm that the behavior of the robot is similar to the earlier models, with the modified

response to obstacles and the added functionality of a touch sensor acting as a power switch.

 Place an obstacle in the path of the robot (observable by the Ultrasonic Sensor) and observe the

Stateflow model within the Stateflow Chart block.

 Trigger the events that cause state transitions (introduction of an obstacle within the field of

view of the Ultrasonic Sensor, for instance). Notice how the current state is highlighted with a

blue outline, and ensure that specific events trigger transitions to corresponding states and that

the controller behaves as observed in Section 2.4.

If you are curious…
Q1. What else can I do with Stateflow?

A1. In addition to developing algorithms with complex control logic graphically, Stateflow provides a

tabular interface too, for modeling system logic using state machines. In Stateflow you can represent

combinatorial logic graphically with flow charts and in tabular format with truth tables.

Designing logic involves defining conditions to be checked and subsequent actions to be performed.

Stateflow enables you to define conditions and actions in C or in MATLAB®. You can manage the data

used in conditions and actions from the Simulink® Model Explorer. Before executing your design,

Stateflow notifies you of possible state inconsistencies, unused data and events, and invalid transitions.

More details on Stateflow and its key features can be found at:
http://www.mathworks.com/products/stateflow/features.html#key-features

Domain-specific examples on using Stateflow can also be found at:
http://www.mathworks.com/products/stateflow/model-examples.html

http://www.mathworks.com/help/stateflow/ug/what-is-a-flow-graph.html
http://www.mathworks.com/products/stateflow/features.html#key-features
http://www.mathworks.com/products/stateflow/model-examples.html

 Simulink® and LEGO® MINDSTORMS® EV3®

57 | P a g e

Appendix 1: Background Information

Simulink
Simulink® is a block diagram environment for multidomain simulation and Model-Based Design. It

supports simulation, automatic code generation, and continuous test and verification of embedded

systems.

Simulink provides a graphical editor, customizable block libraries, and solvers for modeling and simulating

dynamic systems. It is integrated with MATLAB®, enabling you to incorporate MATLAB algorithms into

models and export simulation results to MATLAB for further analysis.

Hardware Support Packages
With the help of free add-ons called Hardware Support Packages,

Simulink provides built-in support for prototyping, testing, and

running models on low-cost target hardware, such as Arduino®,

LEGO® MINDSTORMS® robots, and Raspberry Pi. You can design

algorithms in Simulink for control systems, robotics, audio

processing, and computer vision applications and see them perform

with hardware. This hardware support is also available in MATLAB

and Simulink Student Version.

Simulink built-in support for hardware includes:

 Automated installation and configuration

 Target hardware device libraries of Simulink blocks that

connect to I/O ports, sensors, and actuators

 Streamlined workflows for designing, building, and executing algorithms on supported target

hardware

 Direct communication between Simulink and the target hardware

 Interactive parameter tuning and signal monitoring of your application as it runs

 Model deployment for autonomous execution

Figure 49: Get Hardware Support Packages

 Simulink® and LEGO® MINDSTORMS® EV3®

58 | P a g e

LEGO MINDSTORMS EV3
The LEGO MINDSTORMS EV3 provides a low-cost, yet remarkably powerful embedded target which

includes a powerful ARM9 processor, USB port for WiFi and Internet connectivity, Micro SD card reader,

back-lit buttons and 4 motor ports. In order to harness this capability, however, it is necessary to have an

appropriate programming pathway. In this context, the Simulink enables high-level Simulink designs to

be automatically cross-compiled for execution on the NXT Intelligent Brick without users having to engage

in low-level programming. Furthermore, Simulink’s ‘External Mode’ capability allows users to interact

with, monitor and tune the code as it executes fully autonomously on the EV3 Intelligent Brick.

 Simulink® and LEGO® MINDSTORMS® EV3®

59 | P a g e

Appendix 2: Software and Hardware Setup

Software
In order to run through projects 1&2 in this workshop, the following software is needed:

1. Window or Linux. For supported operating systems see:
http://www.mathworks.com/support/sysreq/current_release/index.html

2. MATLAB and Simulink R2014a or higher

3. A C-compiler that works with Stateflow:

http://www.mathworks.com/support/compilers

4. Simulink Support Package for LEGO MINDSTORMS EV3

Hardware
1. 45544 LEGO® MINDSTORMS® Education EV3 Core Set:

https://education.lego.com/en-us/lego-education-product-database/mindstorms-ev3/45544-lego-mindstorms-education-ev3-core-set

Figure 50: LEGO EV3 Education Base Set

2. Wi-Fi dongle for EV3. See recommended dongle here:

http://www.lego.com/en-us/mindstorms/support/faq

http://www.mathworks.com/support/sysreq/current_release/index.html
http://www.mathworks.com/support/compilers
https://education.lego.com/en-us/lego-education-product-database/mindstorms-ev3/45544-lego-mindstorms-education-ev3-core-set
http://www.lego.com/en-us/mindstorms/support/faq

 Simulink® and LEGO® MINDSTORMS® EV3®

60 | P a g e

Configuration
Wi-Fi

1. Setup a local Wi-Fi network or use an existing one that allows devices on the network to

communicate with each other

2. Connect EV3 Intelligent Brick by following instructions on Pages 22-23 in this document from

LEGO: http://cache.lego.com/r/education/-

/media/lego%20education/home/downloads/user%20guides/global/ev3/ev3-user-guide-en.pdf

3. Note down the IP Address of the EV3 Intelligent Brick from:

a. Settings Tab > Brick Info > IP Address OR

b. Setting Tab > WiFi > [Click] on the network to which the brick is connected

* Note that the IP Address of the EV3 Brick might change every time it is connected to the

network

4. Connect the computer to the same Wi-Fi network as the EV3 Intelligent Brick

5. Run the following command at the MATLAB Command Prompt with IP Address noted from Brick

Info.
>> h = legoev3('xxx.xxx.xxx.xxx')

If an EV3 Brick is found, you will get a valid handle h to the EV3 Brick, which will allow you to

interact with the Brick programmatically.

h =

 legoev3 with properties:

 ipAddress: 'xxx.xxx.xxx.xxx'

http://cache.lego.com/r/education/-/media/lego%20education/home/downloads/user%20guides/global/ev3/ev3-user-guide-en.pdf
http://cache.lego.com/r/education/-/media/lego%20education/home/downloads/user%20guides/global/ev3/ev3-user-guide-en.pdf

	Motivation for this workshop
	Getting started
	How to use and work with this manual
	I1. Workshop run-through options
	I2. Notation and formatting

	Project 0: Getting Familiar with Simulink
	Simulink
	Simulink Library Browser and Simulink Models
	More on Simulink

	Project 1: Explore Simulink and LEGO MINDSTORMS EV3
	P1.1 Get Started: Program EV3 Status Light with Simulink
	Motivation
	Objective
	Tasks/Challenge:
	Solution
	Steps/Approach:
	Create Simulink model
	Prepare Model for Deployment to EV3 Brick
	Deploy Simulink Model to EV3 Brick
	Observe
	Next Steps

	If you are curious…

	P1.2 Work with EV3 I/O: Access and Display EV3 Sensor Value
	Motivation
	Objective
	Task/Challenge
	Solution
	Steps/Approach
	Create a Simulink Model
	Prepare model for deployment to EV3 brick
	Deploy Simulink Model to EV3 Brick
	Observe
	Next Steps

	If you are curious…

	P1.3 Model, Test and Implement Collision Avoidance Behavior
	Motivation
	Objective
	Tasks/Challenge
	Solution
	Steps/Approach
	Design and Simulate Intelligent Behavior in Simulink
	Prepare model for deployment to EV3 Brick
	Deploy Simulink Model to EV3 Brick
	Observe
	Next Steps

	If you are curious…

	P1.4 Control interactively: Speed and Steering Control
	Motivation
	Objective
	Tasks/Challenge
	Solution
	Steps/Approach
	Create a Simulink model
	Prepare model for running on EV3
	Run model in External Mode
	Observe
	Next Steps

	If you are curious…

	Project 2: Complex System Design with Simulink
	P2.1 Line Following Robot
	Motivation
	Objective:
	Tasks/Challenge:
	Solution:
	Steps/Approach
	Start from a supplied Simulink model
	Prepare and run model in External Mode
	Tune controller parameters
	Next Steps

	P2.2 Line-Following and Collision-Avoiding Robot – With Base Simulink Blocks
	Motivation
	Objective:
	Tasks/Challenge
	Solution
	Steps/Approach
	Develop and test behavior with simulation
	Prepare model for deployment to EV3 brick

	P2.3 Line-Following and Collision-Avoiding Robot – With User-Defined MATLAB Function Block
	Motivation
	Objective:
	Task
	Solution
	Steps/Approach
	Create Simulink model
	Prepare the model for deployment to the EV3 Brick
	Observe

	If you are curious…

	P2.4 Line-Following and Collision-Avoiding Robot – Event-driven modeling
	Motivation
	Objective:
	Task
	Solution
	Steps/Approach
	Create Simulink model
	Prepare the model for deployment to the EV3 Brick
	Observe

	If you are curious…

	Optional Project 1: Plant Modeling for LEGO EV3 Robot
	OP1.1 Simulation Model of EV3 Robot
	Motivation
	Objective
	Tasks/Challenge
	Solution
	Steps/Approach
	Import the XML file into Simulink
	Actuate the robot

	OP1.2 Motor Modeling for EV3 Plant
	Motivation
	Objective
	Tasks/Challenge
	Solution
	Steps/Approach
	Include Motor Dynamics
	Acquire data
	Estimate Parameters
	Simulate Final Model
	Next Steps

	If you are curious…

	Optional Project 2: Controller Design for LEGO Robot
	OP2.1 Design PID Controller for EV3 Robot
	Motivation:
	Objective:
	Tasks/Challenge:
	Solution:
	Steps/Approach
	Observe Open-loop Plant behavior
	Design PID Controller
	Simulate EV3 Robot Model with Initial Controller
	Test the Controller on the EV3 Hardware

	If you are curious…

	OP2.2 Fine-tune PID Controller for desired step response
	Motivation:
	Objective:
	Tasks/Challenge:
	Solution:
	Steps/Approach
	Observe un-optimized closed-loop plant behavior
	Examine Desired Response Characteristics
	Using Simulink Design Optimization to find optimal PID Gains
	Using Simulink Design Optimization to find optimal PID Gains

	If you are curious…

	Optional Project 3: Event-driven modeling using Stateflow
	Motivation
	Objective:
	Task
	Solution
	Steps/Approach
	Create Simulink model
	Prepare the model for deployment to the EV3 Brick
	Observe

	If you are curious…

	Appendix 1: Background Information
	Simulink
	Hardware Support Packages
	LEGO MINDSTORMS EV3

	Appendix 2: Software and Hardware Setup
	Software
	Hardware
	Configuration

