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Motivation for this Workshop 

As the industry, technology and society make rapid progress, there is a growing need to teach the next generation 

of engineers ever more complex concepts and build intuition quickly, so that they can apply their knowledge to 

develop the technology of the future. This calls for hands-on and project-based learning via low-cost, easy to use 

hardware and software platforms, to make it easier and fun to teach, learn and test the engineering ideas. 

Simulink® has long been the tool of choice of the industry (automotive, aerospace, electronics, etc.), since it 

provides a very user-friendly, collaborative and flexible environment for designing, simulating, testing and 

eventually implementing, complex, multi-domain systems and their control logic. 

Simulink includes the capability to program low-cost hardware like LEGO® Mindstorms® robots, Arduino®, 

Raspberry Pi®, and many others. This new capability enables students to develop and test a variety of controls, 

signal, image and video processing related applications, from within Simulink and Stateflow®.  

This workshop is based on Simulink Support Package for Raspberry Pi. You will have a chance to work through lab 

modules with examples of image and video processing. They will gain practical hands-on experience in building 

high-level examples themselves. Additionally, participating faculty members would have a chance to understand 

the potential for use in the classroom with students. 

At the end of this workshop, you will be able to: 

1. design, simulate and test custom algorithms in Simulink 

2. implement these algorithms on low-cost embedded hardware such as Raspberry Pi without writing any 

C-code 

3. see how easy it is to program low-cost hardware with Simulink 

4. incorporate user-written libraries and functions in C into their Simulink models and embedded 

applications 

Getting Started 

If you are new to MATLAB®, Simulink or Simulink Support Packages, take a look at the following introductory 

material to get started: 

a. To learn more about MATLAB and Simulink, check out interactive tutorials at: 

mathworks.com/academia/student_center/tutorials/ 

b. For the latest information about Raspberry Pi Support from Simulink, see: 

mathworks.com/hardware-support/raspberry-pi.html 

c. Supported hardware for project based learning: 

mathworks.com/academia/hardware-resources/ 

http://www.mathworks.com/academia/student_center/tutorials/
http://www.mathworks.com/hardware-support/raspberry-pi.html
http://www.mathworks.com/academia/hardware-resources/
http://www.mathworks.com/academia/hardware-resources/
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Introduction: How to Use and Work with this Manual 

I1 Workshop Run-through Options 

While working through this manual, there are several entry points that you can choose from. 

 To understand manual notation we recommend reviewing intro sections I1 and I2. 

 Depending on your Simulink skills level you might start with example problem P0.1, or with the first self-

constructed model P1.2. 

 Reference material for frequently used tasks is listed in sections R1-R3 for your convenience. 

Start at the section relevant to your Simulink experience level: 
 

Section Topics Covered Level 
Recommended 
Experience 

I1, I2 Run-through options, Notation 
and Formatting 

Introductory None 

P0.1, P0.2, 
P0.3 

Getting Familiar with Simulink Beginner None 

P1.1 Checking Product Installation Beginner Simulink 

P1.2 System Design with Simulink Experienced Simulink, SSP* for RPi 

P2.1 – P2.4 Image Inversion/ Object 
Detection 

Experienced Simulink, SSP* for RPi 

P3.1 – 3.6 Edge Detection Advanced Simulink, SSP* for RPi 

P4.1 – 4.3 Optional: GPIO & C Programming Experienced Simulink, SSP* for RPi 

*SSP = Simulink Support Package 

I2 Notation and Formatting 

 All required information is formatted as standard text on white background. 

 Important information is highlighted with a grey background. 

 Buttons on the brick and in Simulink are displayed as such or bracketed, e.g., [OK] 

for the OK button or [Deploy to Hardware] (Figure 1). 

 Menu navigation in Simulink is shown as a sequence, e.g., MyFiles > SoftwareFiles 

> SoundTone1 > Run. 

 MATLAB code to be run / copied, is included in the document as below: 

xlabel('Time [sec]'); 

  

Figure 1: Simulink  
button example 
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Getting Familiar with Simulink 

P0.1 Simulink 

Simulink® is a block diagram environment for multi-domain simulation and Model-Based Design. It supports 

system-level design, simulation, automatic code generation, and continuous test and verification of embedded 

systems. Simulink provides a graphical editor, customizable block libraries, and solvers for modeling and 

simulating dynamic systems. It is integrated with MATLAB®, enabling you to incorporate MATLAB algorithms into 

models and export simulation results to MATLAB for further analysis. 

Key capabilities 

 Graphical editor for building and managing hierarchical block diagrams 

 Libraries of predefined blocks for modeling continuous-time and discrete-time systems 

 Simulation engine with fixed-step and variable-step ODE solvers for differential equations. 

 Scopes and data displays for viewing simulation results 

 Project and data management tools for managing model files and data 

 Model analysis tools for refining model architecture and increasing simulation speed 

 MATLAB Function block for importing MATLAB algorithms into models 

 Legacy Code Tool for importing C and C++ code into models 

With the help of code generation products like Simulink Coder and Embedded Coder, Simulink models can also be 

converted to C-code optimized for specific embedded platforms. 

 

P0.2 Simulink Library Browser and Simulink Model 

To get started with Simulink, launch the Simulink Library Browser. To do this, click on the Simulink Library Browser 

button on the Home Tab of MATLAB Desktop, or type simulink at the MATLAB 

command prompt. 

The Simulink Library Browser is a collection of high level blocks that you can use to 

create a block-diagram representation of the system you are trying to design. From 

a different perspective, these blocks allow you to access or generate, apply 

algorithms and visualize or save the processed data or information, which flows 

through the system. 

Once the Simulink Library Browser launches (Figure 2), you will see a window like 

Figure 3 below. Depending on the products included in the MATLAB installation, you will see some or all of the 

block libraries. In particular, we will work with the Simulink Support Package for Raspberry Pi Hardware, which is 

highlighted below. 

Figure 2: Launch Simulink 
Library Browser 
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A Simulink Model (Figure 4) represents the high level design of a system or an algorithm. You can create models 

by dropping blocks from the Simulink Library. After that, you can run the simulation or deploy it to the hardware. 

 

Figure 3: Simulink Library Browser 
 

 Simulink Library Browser  [Open] an existing Simulink model 

 Simulink block libraries  [Create] a new model 

 Library blocks  [Search] for library blocks 
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Figure 4: Simulink model 

 

 Simulink Model Window  [Save] a Simulink model 

 Simulink model  [Run] Simulink model 

 [Open] the Simulink Library Browser  [Deploy] Simulink model to hardware 

 [Create] a new Simulink model   

 

P0.3 Simulation with Simulink 

A Simulink model allows you to develop a high-level, graphical design of your algorithm or system. 

Say for example XYZ Automobiles is trying to design a new car. As you can imagine, a car is a complicated system 

with different mechanical, electrical and hydraulic components, whose interaction is controlled by intelligent 

computers running embedded code. Any mistakes in the design process can result in significant revenue loss for 

XYZ Automobiles. To avoid this, they will actually design a car and test a significant part of its performance in a 

computer simulation environment, before they even make it. 
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The industry standard way to do this is by creating mathematical models of different components, and then 

simulating their interaction based on intelligent algorithms, that make sure that things behave in a nice way. This 

approach is becoming standard in almost all automotive, aerospace, defense and hi-tech industries now. 

A Simulink model allows you to design these intelligent algorithms and test them, before running them in the real 

world. In addition to that, the intelligent behavior can also be translated to code in different low-level languages 

– e.g. C, HDL, PLC text – that can be deployed directly to embedded controllers like the Engine Control Unit (ECU) 

in your car. 

We will work with the code generation capability of Simulink for the rest of this workshop. Let’s take a look at the 

simulation capabilities to start with. 

Once you have created a Simulink model (Figure 6) representing your system, and set up appropriate simulation 

parameters, you can just click on the green RUN button, and observe the behavior of your system over time.  

If you are curious, this is a simplified version of how Simulink works: 

When you click on the green run button (Figure 5), the Simulink model that you created with built-in or custom 

blocks is translated to an equivalent differential equation. Simulink then uses one of the built-in differential 

equation solvers, to solver this differential equation over time, and consequently, simulate the dynamic behavior 

of the system. 

Given the complex nature of this whole process, there are several pieces of information needed from the system 

designer – e.g. the nature of data exchanged between blocks, some notion about the dynamic nature of the 

system, simulation time and step size, interaction preferences, etc. All of these can be controlled by changing the 

appropriate settings in the ‘Model Configuration Parameters’ (Figure 8) of each Simulink model. 

To learn more about key features of Simulink, check out the following webpage: 

mathworks.com/products/simulink/features.html  

If you want to see how simulation works: 

a. Open the model for simulating a bouncing ball, by typing sldemo_bounce at the MATLAB Command 

Prompt. 

b. Check model configuration from Simulation > Model Configuration Parameters (Figure 8) 

c. Run the model by clicking on the green [Run] (Figure 5) button to run the simulation and observe the behavior 

(Figure 7). 

 

 

http://www.mathworks.com/products/simulink/features.html
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P0.4 More on Simulink 

If you want to try out some more examples, go to Simulink documentation under: 

MATLAB Desktop > Help > Documentation > Simulink > Examples 

  

Figure 7: Bouncing ball visualization Figure 8:  Simulink model configuration parameters  

Figure 6: Bouncing ball model (sldemo_bounce.slx) 

 

Figure 5: Run Button 
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Project 1: Blink LED – First Application with Simulink and Raspberry Pi 

P1.1 Blink the Small Green LED on the Raspberry Pi  

Objective: Check hardware and software installation. 

Tasks/Challenge: 

 Run an existing model, BlinkLED1.slx (Figure 9). 

 

Figure 9: Simulink model BlinkLED1.slx 

 

Steps/Approach: 

1. If a model is already running, click the stop button (Figure 10).      

2. Within MATLAB, navigate to the Working directory. 

3. Open the model BlinkLED1.slx by double-clicking on the file in the Current 

Directory browser. 

4. Check that the Raspberry Pi  is powered on and connected to the host PC with a Ethernet cable 

Select BlinkLED1.slx > Tools > Run on Target Hardware > Options menu item, and check for the following 

settings (Figure 11), note your Host name IP address and Click [OK] to close the window.   

Note: Your Host name IP address may be different; common values are: 169.254.0.31, or 169.254.0.2. 

Figure 10: Stop button 



 

Page 12 of 40 
 

 

Figure 11: BlinkLED1 Configuration Parameters 

 

5. To test your connection to the Rapsberry Pi, at the MATLAB prompt type !ping 169.254.0.31 (or 

the using the Host name IP address of your Raspberry Pi from step 4). Ensure that you get a positive 

response and not a “Request timed out” reply. 

6. On the BlinkLED1 model window, [Deploy] the model to the Raspberry Pi (Figure 12). Note that: 

 This action initiates the build, download and run procedure. Progress is reported in the status bar at 

the bottom left of the model window, terminating with the message, ‘Model successfully downloaded 

…’ 

 The build process automatically starts / runs the executable on the Raspberry Pi as can be observed 

from the blinking LED (LED0) on the Raspberry Pi (Figure 13). 

 

    
Figure 12: Deploy to Hardware button   Figure 13: LED0 on Raspberry Pi board 

 

Additional notes: 

 It may take a few seconds to open a Simulink model, unless you have already started Simulink. 
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 It is not possible to compile the model without having a Raspberry Pi connected.  Simulink will produce 

an error message. 

 Tip: If you do not have a Raspberry Pi, you can test the syntactic integrity of your model using the 

menu option Simulation > Update Diagram, (or simply [Ctrl-D]). 

 The program running on the Raspberry Pi can be started and stopped from MATLAB as follows: 

o At the MATLAB prompt assign h = raspberrypi. This will create a Raspberry Pi object in 

MATLAB which can then communicate with the unit. You can note the parameters of the 

object. 

o Type h.connect  at the MATLAB prompt which connects the object to the Raspberry Pi. 

o h.stop(’BlinkLED1’) stops the program running and h.run(’BlinkLED1’) runs 

the application BlinkLED1. 

o It is also possible to log on to the Raspberry Pi via a shell. h.openShell(’ssh’)  opens a 

shell. Username is pi and password raspberry. The program can also be run and stopped like 

all other Linux application at the OS level of the Raspberry Pi. 

 

P1.2 Build Your Own BlinkLED1 Model  

Objective: Learn how to create models in Simulink 

Task/Challenge: Re-construct the BlinkLED1.slx (Figure 9) model from scratch to get familiar with the design 

process. 

Steps/Approach: 

1. [Open] the Simulink Library Browser. 

2. [Create] a new model and [Save] the new ‘untitled’ model as myBlinkLED1.slx in the working directory. 

3. [Search] for the three blocks listed in the table below and [Drag and drop] them into the myBlinkLED1.slx 

window. 

 

LIBRARY BLOCK PROPERTY SETTING/VALUE 

Simulink Support Package for 
Raspberry Pi Hardware 

LED  
  

Simulink > Signal Attributes Convert   

Simulink > Sources 

Pulse Generator 

Pulse type: 
Time: 
Amplitude: 
Period:  
Pulse Width: 
SampleTime: 

Sample Based 
Use Simulation Time 
1 
20 
10 
0.1 
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4. After configuring the Pulse Generator, Convert  and LED blocks according to the settings in the table 

above,  their dialog boxes should look like Figure 14: 

 

   

Figure 14: Block Settings for Pulse Generator & Convert blocks for BlinkLED1.slx model 

 Note: We use a sample-based pulse generator, since running on hardware requires fixed-step solvers. 

5. Use Display > Signals and Ports > Port Data Types and select the Simulation > Update Diagram menu 

option (or Ctrl + D shortcut) to highlight signal types and potential mismatch/truncation issues. 

 Simulink ensures that the data types of Raspberry Pi block inputs are automatically type cast to the 

appropriate data type for the underlying hardware, but it is good practice to be aware of the data 

types used in your model. 

6. To configure the model for real-time implementation on the Raspberry Pi select Tools > Run on Target 

Hardware > Prepare to Run… and check for the following settings in the Run on Target Hardware and 

Solver panes (see Figure 15 & 16): 
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Figure 15: Run on Target Hardware pane 

 

 

 

Figure 16: Solver pane 
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7. Click [Apply] to apply the changes and [OK] to dismiss the dialog.   It is also good practice to [Save] your 

work before proceeding to run the model. 

8. Verify that the Raspberry Pi is powered-on and connected. 

9. [Deploy] the model to the Raspberry Pi (Figure 12). 

10. Once the program starts running you should see the blinking LED (Figure 13). 

 

Additional notes: 

 The program can be started and stopped from MATLAB as follows: 

o At the MATLAB prompt assign h = raspberrypi. This will create a Raspberry Pi object in 

MATLAB which can then communicate with the unit. 

o Type h.connect  at the MATLAB prompt which connects the object to the Raspberry Pi. 

o h.stop(’myBlinkLED1’) stops the program running and h.run(’myBlinkLED1’) 

runs the application BlinkLED1. 
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Project 2: Object Detection with Video Processing  

P2.1 Image Inversion: Simple Video Processing 

Objective: To use the live video input, build a simple video processing application and get familiar with External 

Mode* operation of Simulink. 

Tasks/ Challenge: Design and build an application that takes an video input and inverts the colour values. Also 

use external mode to change the “inversion” threshold and examine the effect on the resulting video. 

Steps / Approach: 

1. Start building a new model  using the following blocks 

LIBRARY BLOCK PROPERTY SETTING/VALUE 

Simulink Support Package for 
Raspberry Pi 

V4.2 Video Capture  
Image Size: 
Pixel Format:  
Sample Time:  

160 x 120 
RGB 
0.1 

SDL Video Display  Pixel Format:  RGB 

Simulink > Commonly Used 
Blocks 

Constant  
Constant Value: 
Output Data Type: 

255 
uint8 

Sum 
Icon Shape: 
List of signs: 

Round or Rectangular 
-+ 

 

2. Apply the same procedure to construct the ImageInversion model shown in Figure 17.  You must configure 

the model for running on Raspberry Pi. You’ll also need to enable External Mode* as shown in Figure 18.  

When using External Mode, you need to use the RUN button to deploy the model, and the STOP button 

to stop the model (Figure 18).  The resulting display is shown in Figure 19. 

 

* External Mode (Figure 18) allows you to run your model on the Raspberry Pi, while still using Simulink 

on your host computer as an interface to interact with your model.  This allows for live parameter tuning 

– you do not need to stop, edit and restart the model.  You just change the parameter (e.g. value in 

constant block in Figure 17) and the parameter is automatically passed to the Raspberry Pi which uses the 

new parameter without pausing it’s operation.  External Mode also allows you to log and view data while 

using Simulink window.  With this model we can see the output of the model with the SDL Display block 

(Figure 18) on our host computer.  

 

Note: Remember when using External Mode, you need to use the RUN button to deploy the model, and 

the STOP button to stop the model (Figure 18). 

 

Note: If your model stops working after 10 seconds, you may have forgotten to adjust the Stop time in 

the Solver pane (Figure 16). 
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Note: To set the Constant Output Data Type to uint8, use the Signal Attributes tab. Double click on the 

Constant block and go to the Signal Attributes tab in the dialogue box. 

 

 

Figure 17: Image Inversion model 

 

 

Question: (Answers on last page of manual) 

1. What happens when you change the constant 255 to other values? 

 

     

Figure 18: External Mode, Run, and Stop buttons  Figure 19: Image Inversion display      
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P2.2 Object Detection: Simple Object Detection 

Objective: To build an application that detects a green object and is able to detect it around the screen by placing 

a red square in the centroid of the object. Learn about the following product features: external mode, data logging 

features of scopes, how to build subsystems, MATLAB functions and use built-in functions. 

 

Task/ Challenge: Build a Simulink model in stages that is capable of detecting a green objects in the input video. 

The idea is to perform an appropriate arithmetic transformation on the RGB components of the colour image to  

 

 Get an image intensity of green, and then to  

 Set a threshold in order to convert the image into binary & compute the centroid  

 Mark the centroid of the area with a red dot, and output to the display 

 

Steps/ Approach:  There are 3 parts to this project. 

P2.2.1 Part 1: Build the Object Detection Model 

First we need to build the model, which uses the webcam as input, detects a green object, and outputs to the 

display. 

 

1. Use the following blocks to build the model 

LIBRARY BLOCK PROPERTY SETTING/VALUE 

Simulink Support Package for 
Raspberry Pi 

V4.2 Video Capture  
Image Size: 
Pixel Format:  
Sample Time:  

160 x 120 
RGB 
0.1 

SDL Video Display  Pixel Format:  RGB 

Commonly Used Blocks Subsystem   

 

Inside Subsystem 

Commonly Used Blocks 

Constant  Constant Value: 255 

Sum 
Icon Shape: 
List of signs: 

Round or Rectangular 
--+ 

Inport   

Outport   

Math Operations Product No of Inputs: */ 

Gain Gain: 255 

Logic and Bit Operations Relational Operator Relational Operator: >= 
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2. Build ObjectDetection.slx model as in Figure 20 & 21.  The Subsystem block helps you visually organize 

your model and does not affect the numeric calculations or operation on the Raspberry Pi. Inports and 

Outports of the Subsystem block define the interface to the higher level in the hierarchy. 

 

Figure 20: Object Detection Example 

 

Figure 21: Object Detection subsystem 

 

3. Note that all of the computations are to be performed in uint8.  (Answers on last page of manual) 

a. How would you ensure that the output of the blocks are of the correct type at the end of each 

block computation?  Hint: Display > Signals & Ports > Port Data Types 

b. Why should the value of Gain be 255 to display a binary image? 

c. How would you ensure that the Add block does not overflow? 
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4. Ensure that the external mode is enabled (Figure 18). 

5. Having ensured the Raspberry Pi is powered-on and connected, click the RUN button to deploy the model 

in external mode.  

6. What do you see on the display? Modify the value of the Threshold and see how it affects the size and 

shape of the binary image. 

P2.2.2 Part 2: Find the Centroid  

Next, we will find the centroid of this binary image by implementing a custom algorithm using a MATLAB Function 

block.  The MATLAB Function block allows you to write your MATLAB code and have it execute inside of Simulink.  

Sometimes it is easier to express algorithms in a textual language compared to a graphical one. In this instance 

assume we are already familiar with functions find() which returns the rows and columns of non-zero elements 

of a matrix, and mean() which returns the arithmetic mean of a vector. To find the centroid of an binary image we 

first need to obtain the rows and columns of non-zero elemnts and subsequently compute the mean value of the 

rows and columns, which in turn will give us the coordinates of the centroid. 

 

LIBRARY BLOCK PROPERTY SETTING/VALUE 

Simulink > Commonly Used 
Blocks 

Scope    

Simulink > User-Defined 
Functions 

MATLAB Function   

 

7. Add the Scope block and user defined MATLAB Function block, and then insert the code as shown below 

in Figures 22 & 23. 

 
Figure 22: Object Detection model 
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function [pos, detect] = FindCentroid(bw) 

%#codegen 

[r,c]=find(bw); 

if isempty(r) 

pos = [-1; -1]; 

detect = false; 

else 

pos = [mean(r); mean(c)]; 

detect = true; 

end 
Figure 23: Finding the centroid script 

 

8. You can use the logging facility in the Scope (logging the historical information stored by the Scope) to 

record the time response of the centroid of the object.  To do this, open the Scope and click Parameters 

(gear icon) in upper left of the Scope window and edit the History tab (Figure 24). 

 
Figure 24: Logging data with the scope 

 

9. Log some data and plot the results in MATLAB to look at the trajectory of the object over time. Note that 

you can do time responses as well as plotting the x, y coordinates against each other. 

10. You can plot the data using plot or simplot commands. 

P2.2.3 Part 3: Mark the Centroid on the Image 

And finally we now place a red marker on the centroid and output the marker on the display. 

 

LIBRARY BLOCK PROPERTY SETTING/VALUE 

User-Defined Functions MATLAB Function   
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11. Create a model ObjectMarker.slx as below (Figure 25 & 26):  

 
Figure 25: Object Marker model 

 

function [r1,g1,b1] = MarkImage(r,g,b, pos, detect) 

%#codegen 

r1 = r; g1 = g; b1 = b; 

if detect, 

    r1(pos(1)-3:pos(1)+3, pos(2)-3:pos(2)+3) = 255; 

    g1(pos(1)-3:pos(1)+3, pos(2)-3:pos(2)+3) = 0; 

    b1(pos(1)-3:pos(1)+3, pos(2)-3:pos(2)+3) = 0; 

end 
Figure 26: Marking the centroid with a red square 

12. Having ensured the Raspberry Pi is powered-on and connected, click the RUN button to deploy the model 

in external mode.  

13. Test your model with a green object.  Do you see a red square tracking the centroid of your green object?  

What happens if you introduce a second green object? 

 

P2.3 Optional: Using General Purpose IO Pins 

If additional hardware is provided to explore use of General Purpose IO pins on the Raspberry Pi, please follow 

the instructions in Appendix 4.  
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Project 3: Edge Detection 

P3.1 Finding the Slope Local Maxima for a Two Variable Function 

Objective: To build an application that computes the slope local maxima for a two variable function. Learn to 

simulate the system model, explore parameter tuning, and show simulation results. 

 

Tasks/ Challenge: Build a Simulink model that determines the slope local maxima for a two variable function. 

The idea is to implement a two-step approach that first determines the slope of the two-variable function by 

computing the gradient magnitude of that function, and then determines the slope local maxima coordinates by 

finding where the slope function exceeds a given threshold.    

 

Figure 27 & 28 show the one-dimensional case, while Figure 29 & 30 depict a two-variable function and its 

gradient magnitude, respectively. 

 
Figure 27: Steep slope of a single-variable function.   
It may be interpreted as the strong image contrast 
for an edge (one-dimensional view) 

 
 

Figure 28: Maximizing the gradient function with 
thresholding. It may be interpreted as the image 
edge detection algorithm (one-dimensional view) 
 

 
 

                
Figure 29: Two-variable function plot    Figure 30: Gradient magnitude function 

 

 



 

Page 25 of 40 
 

Steps / Approach: 

 

1. Open the MaximumSlope_start.slx by double-clicking on the file in the Current Directory browser (Figure 31). 

Note that this model uses model callback functions to set variable z and intitailise the figures. This is 

a common way to initialise data in a Simulink model. 

2. [Search] for the blocks listed in the table below and [Drag and Drop] them into the MaximumSlope_start.slx 

model. 

 

LIBRARY BLOCK PROPERTY SETTING/VALUE 

Ports & Subsystems 
Subsystem  

  

Inport    

User-Defined Functions MATLAB Function   

Logic and Bit Operations Relational Operator Relational Operator: >= 

Math Operations Gain Gain: 255 

 

3. Rename the Subsystem as MaximumSlope, double click it and build the algorithm subsystem with the blocks 

of the above table, as in Figure 32. 

4. Double click the MATLAB Function block and edit as follows: 

 
function y  = ComputeGradient(u) 
%#codegen 

  
% computing gradient components 
[gx,gy] = gradient(u); 

  
% computing gradient magnitude 
y = sqrt(gx.^2 + gy.^2); 

 

5. Double click the Gain block. In the Signal Attribute tab, set the Output data type as uint8. 

6. Set the Simulation Stop Time to inf. 

7. [Run] the model in “Normal” Simulation mode. While the simulation is running, double click the Threshold 

block. Modify its value and see its impact on local maxima detection (Figure 33).   

8. [Save] your model as MaximumSlope.slx in the working directory. 
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Figure 31: Starting model for slope local maxima              Figure 32: Maximum slope subsystem 

 

  
Figure 33: Gradient magnitude thresholding 

 

P3.2 Application Example: Edge Detection Algorithm 

Edge detection is a fundamental tool in image processing. It aims at identifying points in a digital image at which 

the image brightness changes sharply (Figure 27). The points at which image brightness changes sharply are 

typically organized into a set of curved line segments termed edges. 

Objective: To build an algorithm that can detect the edges on an input image from a file or an image acquisition 

device. 

Tasks/ Challenge: Given that the image intensity may be regarded as a two-variable function, build a Simulink 

model that detects the edges by computing its slope’s local maxima, as explained in the previous Section (Figure 

26). 

Steps / Approach: 

 

1. Open the edgeDetectionReference_start.slx by double-clicking the file in the Current Directory browser 

(Figure 34). 
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2. Open your previously saved MaximumSlope.slx model, copy the MaximumSlope Subsystem and paste 

it on edgeDetectionReference_start.slx. 

3. Connect all the signals properly and save the model as edgeDetectionReference.slx in the current 

directory. 

4. [Run] the model in “Normal” Simulation mode. While the simulation is running, double click the 

Threshold block. Find an appropriate value that provides accurate edge detection on the test image 

(Figure 35). 

 

Optional: 

5. You can test the algorithm on real-life images, after they are converted to grayscale.  To try the model 

with an example image (which has been converted to grayscale for you), double-click the Constant  block 

called TestImageBitMap, and replace Constant value field with ylena.   

Note: The constant block may act as an image source by defining an array (ylena in our case) as a constant, 

which is the pixel-based representation of a given grayscale image. 

6. [Run] the simulation and tune the threshold to determine proper edge detection on such image. 

 

    
Figure 34: Reference Edge Detection starting model   Figure 35: Edge Detection result on test image 

    

P3.3 Implementing the Algorithm on Raspberry Pi 

Objective: To implement the edge detection algorithm on Raspberry Pi and test on live video acquired from the 

webcam 

Tasks/ Challenge: Reuse the algorithm that has been verified through simulation, and build the Simulink model 

to be deployed ion the target hardware.  
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Steps / Approach: 

1. Open the edgeDetectionReference_RPi_start.slx by double-clicking the file in the Current Directory 

browser (Figure 36). 

2. Open your previously saved EdgeDetectionReference.slx model, copy the MaximumSlope Subsystem 

and paste it on edgeDetectionReference_RPi_start.slx. 

3. Connect all the signals properly and save the model as edgeDetectionReference_RPi.slx in the current 

directory. 

4. Ensure the Raspberry Pi is powered-on and connected to the computer through the Ethernet cable. 

Connect the webcam to the USB port on the Raspberry Pi. 

5. Click the RUN button to run the model in external mode. 

6. Double click the Threshold block. Tune its value to determine proper edge detection on the video 

sequence (Figure 37). 

 

          
Figure 36: Edge Detection starting model              Figure 37: Live Edge Detection on Raspberry Pi 

 

P3.4 Computing the Gradient as Two Dimensional Convolution 

Objective: To get an alternative implementation of the gradient computation. 

Tasks/ Challenge: Build a Simulink model that implements the gradient computation as a two-dimensional 

convolution. 

As shown in the previous Section, edge detection requires computing the derivative of a two-dimensional image. 

The Sobel edge detector uses intensity values only in a 3×3 region around each image point to approximate the 

corresponding image gradient. More precisely, it uses a pair of 3x3 convolution masks, one estimating the 

gradient in the x-direction (columns) and the other estimating the gradient in the y-direction (rows). As a result, 

the mask is slid over the image as a 2-D convolution with that image, manipulating a square of pixels at a time.  
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The actual Sobel masks are shown below: 

 

1 0 -1    1 2 1 

2 0 -2    0 0 0 

1 0 -1    -1 -2 -1 

 

Steps / Approach: 

1. On the edgeDetectionReference_RPi.slx model, rename the MaximumSlope Subsystem as 

MaximumSlopeFilter, and save the model as edgeDetectionFilter_RPi.slx 

2. Open the MaximumSlopeFilter and edit the MATLAB Function  block as follows: 

 

 

function y = ComputeGradient(u) 

%#codegen 

 

% computing gradient components 

kx = [1,  0,  -1;  

      2,  0,  -2;  

      1,  0,  -1]; 

   

ky = [1,  2,  1;   

      0,  0,  0;  

     -1, -2, -1]; 

  

% 2-D convolution 

gx = conv2(u,kx,'same'); 

gy = conv2(u,ky,'same'); 

 

% computing gradient magnitude 

y = sqrt(gx.^2 + gy.^2); 

 

3. Ensure the Raspberry Pi is powered-on and connected to the computer through the Ethernet cable. 

Connect the webcam to the USB port on the Raspberry Pi. 

4. Click the RUN button to run the model in external mode. Double click the Threshold block. Tune its value 

to determine proper edge detection on the video sequence 
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P3.5 Analyzing Alternative Algorithm Implementations 

Objective: To simplify the computation of the gradient function. Compare the results to the reference algorithm 

and evaluate the difference through simulation. 

Tasks/ Challenge: Build a Simulink model that implements the gradient computation by means of difference 

functions. Implement a testbench to measure the difference between the golden reference and the simplified 

algorithm. 

In the previous section, we learnt that, according to the Sobel method, the horizontal and vertical gradient 

components may be computed as 2-D convolutions of the input image with two specific 3x3 masks. 

Let us now consider alternative, simpler ways to implement such algorithm. 

 

In order to estimate the gradient components 𝐺𝑥 and 𝐺𝑦 for a given image pixel at position (i, j), we can make the 

following assumption: we consider only the contribution of the pixels laying on the ith row and the jth column to 

compute 𝐺𝑥 and 𝐺𝑦, respectively. In other words, we can use a simple difference function to approximate the 

computation of the derivative in the horizontal and vertical directions, as depicted in Figure 38. 

 

 

 
 

 
 
 
 

𝐺𝑥(𝑖, 𝑗) ≈ 𝑢(𝑖, 𝑗 + 1) − 𝑢(𝑖, 𝑗) 
 

𝐺𝑦(𝑖, 𝑗) ≈ 𝑢(𝑖 + 1, 𝑗) − 𝑢(𝑖, 𝑗) 

 

Figure 38: Approximate computation of the gradient components 

 

 

Steps / Approach: 

1. Open EdgeDetectionCompare_start.slx by double-clicking on the file in the Current Directory browser. 

2. Copy (from your model in Project 3.4) and paste the MaximumSlopeFilter Subsystem , and rename it as 

MaximumSlopeSimplified. 

 

 

𝐺𝑦(𝑖, 𝑗) 

𝐺𝑥(𝑖, 𝑗) 
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3. Open the Subsystem  and edit the MATLAB Function  block as follows: 

 

function y = ComputeGradient(u) 

%#codegen 

  

gx = zeros(size(u),'single'); 

gy = zeros(size(u),'single'); 

  

% difference function as a gradient approximation 

gx(1:end - 1,:) = diff(u,1,1); 

gy(:,1:end - 1) = diff(u,1,2); 

  

% computing gradient magnitude 

y = sqrt(gx.^2 + gy.^2); 

 

4. Connect the MaximumSlopeSimplified Subsystem  as in Figure 39 shown below. 

 
Figure 39: Comparison of two different edge detection algorithm implementations 

 

5. [Save] the model as edgeDetectionCompare.slx in the working directory. 
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6. [Run] the model in “Normal” Simulation mode. and observe the difference image. Try and minimize the 

difference by tuning the thresholds. 

 

Optional: 

7. Change the input image to ylena and observe the results. 

8. Open the previously saved edgeDetectionFilter_RPi.slx model. Replace MaximumSlopeFilter Subsystem 

with MaximumSlopeSimplified.  [Save] the model as edgeDetectionSimplified_RPi.slx.  

9. Click the RUN model in external mode and validate the simplified edge detection algorithm on the live 

video from the webcam. 

 

Questions: (Answers on last page of manual) 

1. How do the results of step 8 above using the simplified algorithm compare with the reference model?  

2. How would you measure the difference? What you could do to minimize it? 

3. Would it be possible to simplify further the edge detection algorithm? Hint: think about the following 

equation: 

|𝐺| = √𝐺𝑥
2 + 𝐺𝑦

2 ≈ |𝐺𝑥| + |𝐺𝑦| 

P3.6 Brief Task Overrun Analysis 

Objective: To evaluate the computational complexity of a given algorithm. Get familiar with the task overrun 

analysis capability provided by the target support package. 

Tasks/ Challenge: Run the Simulink model on the target hardware by enabling the overrun detection to see if 

any task overrun occurs during execution. A task overrun occurs when a task is scheduled to execute before a 

previous instance of the same task has completed 

Standard scheduling works well when a processor is moderately loaded. However, if the processor becomes 

overloaded because of the high amount of processing involved with a specific algorithm, task scheduling may fail, 

thus affecting system performance. 

 

Frame dropping is a typical effect of task overruns.  The Simulink Support Package for Raspberry Pi enables actual 

task overrun detection for a specific model running on the target hardware. 

Steps / Approach: 

1. Open the previously saved edgeDetectionFilter_RPi.slx model. 

2. Remove the Threshold block and connect the Constant block directly to the Threshold port of the 

MaximumSlopeFilter Subsystem. 

3. Select Tools > Run on Target Hardware > Options…, check Enable overrun detection on the Overrun 

detection section. Click [Ok]. 
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4. On the Simulink model window, [Deploy] the model to the Raspberry Pi. Wait for the model to run on 

Raspberry Pi. 

5. The windows command prompt will show the detected overruns because of too fast rate for the task, as 

shown in Figure 40. 

 

 

Figure 40: Overruns at the command prompt 

 

To fix an overrun condition, you can: 

1. Increase the sample times for the model and the blocks in it. One way to do that is to decrease the video 

input frame rate; 

2. Reduce the model complexity. 

 

Questions: (Answers on last page of manual) 

a. How can you reduce the video input frame rate for your edgeDetectionFilter_RPi.slx model? 

b. What you think it would be the maximum video input frame rate avoiding overruns? How would you verify 

that? 

c. Try and see if you can experience overruns differences among edgeDetectionFilter_RPi.slx and 

edgeDetectionSimplified_RPi.slx models for any specific input frame rate. 

Hint: please remember to remove the Threshold block and connect the Constant block to the Threshold 

port of the MaximumSlopeSimplified Subsystem on the edgeDetectionSimplified_RPi.slx model for fair 

performance comparison. 
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Appendix 1: Background and References 

Background: 

The Raspberry Pi is a credit-card sized, low-cost, single-board computer with audio and video input/output, 

designed for teaching.  The Raspberry Pi features a Broadcom® system-on-a-chip which includes an ARM 

processor 512 or 1GB MB RAM, and a VideoCore IV GPU. Raspberry Pi provides peripheral connectivity for 

stereo audio and digital video (1080p) and supports USB and Ethernet. 

In order to harness this capability, however, it is necessary to have an appropriate programming pathway.  In 

this context, the Simulink enables high-level Simulink models to be automatically cross-compiled for execution 

on the Raspberry Pi without users having to engage in low-level programming.  Furthermore, Simulink’s 

‘External Mode’ capability allows users to interact with, monitor and tune the code as it executes fully 

autonomously on the Raspberry Pi. 

In addition, to Raspberry Pi  Support from Simulink [4], starting in R2014a, there is also Raspberry Pi Support 

from MATLAB [3].  This provides a library of MATLAB functions which allow you to acquire data from sensors and 

imaging devices attached to a Raspberry Pi.  However the MATLAB code runs on the host computer and not as a 

standalone application on the Raspberry Pi.  In order to run a model or algorithm on the Raspberry Pi you  would 

use the Raspberry Pi  Support from Simulink  and the approach detailed in this manual.   

MATLAB and Simulink support for low-cost hardware such as LEGO MINDSTORMS robots, Arduino, and Raspberry 

Pi is a professionally supported feature developed by the MathWorks, [1, 5, 6].  However, other tools with similar 

aims have previously been available on the MathWorks File Exchange site.  

 

References: 

1. LEGO MINDSTORMS NXT Support from Simulink, http://www.mathworks.com/academia/lego-

mindstorms-nxt-software/legomindstorms-simulink.html  

2. MATLAB Support Package for Arduino (aka ArduinoIO Package), 

http://www.mathworks.com/matlabcentral/fileexchange/32374-matlab-support-package-for-arduino-

aka-arduinoio-package 

3. Raspberry Pi Support from MATLAB, http://www.mathworks.com/hardware-support/raspberry-pi-

matlab.html 

4. Raspberry Pi Support from Simulink, http://www.mathworks.com/hardware-support/raspberry-pi-

simulink.html 

5. LEGO MINDSTORMS EV3 Support from Simulink, http://www.mathworks.com/hardware-support/lego-

mindstorms-ev3-simulink.html 

6. Arduino Support from Simulink, http://www.mathworks.com/hardware-support/arduino-simulink.html  

http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/academia/lego-mindstorms-nxt-software/legomindstorms-simulink.html
http://www.mathworks.com/academia/lego-mindstorms-nxt-software/legomindstorms-simulink.html
http://www.mathworks.com/matlabcentral/fileexchange/32374-matlab-support-package-for-arduino-aka-arduinoio-package
http://www.mathworks.com/matlabcentral/fileexchange/32374-matlab-support-package-for-arduino-aka-arduinoio-package
http://www.mathworks.com/hardware-support/raspberry-pi-matlab.html
http://www.mathworks.com/hardware-support/raspberry-pi-matlab.html
http://www.mathworks.com/hardware-support/raspberry-pi-simulink.html
http://www.mathworks.com/hardware-support/raspberry-pi-simulink.html
http://www.mathworks.com/hardware-support/lego-mindstorms-ev3-simulink.html
http://www.mathworks.com/hardware-support/lego-mindstorms-ev3-simulink.html
http://www.mathworks.com/hardware-support/arduino-simulink.html
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Appendix 2: System Requirements and Setup 

System Requirements and Information: 

 Operating system:  Microsoft Windows or Mac OS X.  All material tested under Windows 7 64-bit. 

 MATLAB and Simulink, at Release R2013a or newer (Windows) or Release R2015a or newer (Mac OS X) 
o MATLAB and Simulink Student Version / MATLAB and Simulink Student Suite also supported 
o OPTIONAL: Computer Vision System Toolbox & DSP System Toolbox for barCodeRPi example 

 If using 64-bit MATLAB it will be necessary to install a compatible C compiler, see below for details. 

 Hardware Kit containing: 
o Raspberry Pi: Raspberry Pi 1 Model B, Raspberry Pi 1 Model B+, or Raspberry Pi 2 Model B 

 Note: Raspberry Pi Model A and Model A+ is NOT Supported 
o Memory card: 

 For Raspberry Pi 1 Model B: 4 GB SD Memory Card 
 For Rapsberry Pi 1 Model B+ or Rapsberry Pi 2 Model B: 4 GB Micro SD Memory Card 

o USB cable: USB A/MicroB – 6ft to power the Raspberry Pi 
o Ethernet Cable – 6 ft long  
o USB to Ethernet adapter 10/100 Mbit/s 

 Note: We have tested adapters that use ASIX AX88772 (10/100) and ASIX AX88178  
(10/100/1000) chipsets. 

o USB webcam: We have tested with Logitech Webcam C270 and Logitech Webcam C210 
o SD / micro SD card reader to write the firmware onto the SD card 
o Props for workshop: green post-it notes, barcode print outs, etc 

 A collection of related third party tools / products which are installed automatically by the Support Package 
Installer tool. A detailed list of these tools / products, their function, and licensing details is provided during 
the installation process. 

 

Download, Installation, Connection and Testing 

 

Step 1:  Install and ‘Select’ a C Mex Compiler for MATLAB and Simulink 

Simulink requires a C compiler in order to compile auto-generated C-code,that would be downloaded on the 

Raspberry Pi.  This compiler must be installed and ‘selected’ prior to using Support Package for Raspberry Pi 

Hardware. 

1. Check whether you are running the 32-bit (PCWIN) or 64-bit (PCWIN64, MAC64) version of MATLAB by 

typing computer at the MATLAB prompt. 

2. 32-bit Versions of MATLAB ship with a C mex compiler, but the installed compiler must also be ‘selected’. 

Type mex –setup at the MATLAB prompt and following the on-screen prompts to do this. 

3. 64-bit versions of MATLAB do not ship with a C compiler.  Download and install a supported compiler.  If 

using the free Microsoft SDK, first install the .NET Framework 4.0, then install the Microsoft SDK.   Once 

installed, the compiler must also be ‘selected’ as described in Step 2 above. 

 

Step 2:  Automated Download and Install of the Raspberry Pi Support from Simulink 

Brief installation notes are provided below. More detailed installation instructions, including screen shots can be 

found in Help > Simulink > Target Hardware > Raspberry Pi > Install Support for Raspberry Pi Hardware 

http://www.adafruit.com/products/998
http://www.adafruit.com/products/102
http://www.adafruit.com/products/102
http://www.adafruit.com/products/592
http://www.adafruit.com/products/730
http://www.amazon.com/Logitech-Widescreen-Calling-Recording-960-000694/dp/B004FHO5Y6
http://www.amazon.com/Logitech-960-000617-Webcam-C210/dp/B003LVZO88
http://www.mathworks.com/support/compilers/R2012b/win64.html
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1. On the MATLAB Toolstrip click Add-Ons and select Get Hardware Support Packages 

 

a. Note: You can also type targetinstaller at the MATLAB prompt. 

2. On Windows 7 platforms, you may be prompted to allow MATLAB to restart in Administrator Mode in 

order to permit installation of new software.  Click OK. 

3. On the Install or Update page of the target installer, select ‘Internet (recommended)’, then click Next 

4. On the Select Target page, select the Simulink Raspberry Pi checkbox, then click Next 

5. The following page lists the third party software that will be installed.  Click Install. 

6. At the Installation Complete page (which appears after a few minutes), select Close to exit installation.  

[The screen also gives the option to continue to update the firmware on the Raspberry Pi, but this is not 

necessary if the Raspberry Pi already has updated firmware.] 

Step 3:  Connect Raspberry Pi to Computer 

Instructions on how to connect up the Raspberry Pi to your computer: 

 

1. Insert the SD/ micro SD memory card into the Raspberry Pi 

2. Connect Ethernet cable:  

a. Connect USB Ethernet dongle to computer (use USB port) 

b. Connect Ethernet cable to USB Ethernet dongle  

c. Connect Ethernet cable to Raspberry Pi 

3. Connect USB to micro USB cable to computer (USB port) and to the Raspberry Pi (micro USB port).  

a. Wait a minute for Raspberry Pi to boot 

4. Connect webcam to USB port on Raspberry Pi (not shown below) 
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5. Test your connection between computer to Raspberry Pi) 

a. Type at the MATLAB command line:  !ping 169.254.0.31 

b. You should see the result shown below: 

 
6. Open and configure test model 

a. Open Image Inversion model typing at the MATLAB command line: raspberrypi_inversion  

b. Click Tools -> Run on Target Hardware -> Options 

c. Check to make sure you have Target hardware = Raspberry Pi.  Also check the IP address.  Click 

OK. 

7. Run the test model 

a. Click Run on Simulink toolbar:  

b. Watch the status bar for progress: 

c. Output should be an SDL Display with an inverted image: 

 

d. Click Stop on Simulink toolbar:  

 

You have now successfully setup and tested your Raspberry Pi with webcam.  
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Appendix 3: Working with Raspberry Pi 

Basic Raspberry Pi Information: 

You can get basic information on the Raspberry Pi at http://www.raspberrypi.org/faqs 

1. Ports: 2 to 4 USB ports, micro USB port for power,  Ethernet port, SD card / micro SD socket, HDMI output 

port, and a set of GPIO pins (26 or 40). 

2. Dimensions: ~85mm x 56mm x 21mm, with overlap for the SD / micro SD card and connectors.  Weight is 

~45g. 

3. Power: 5V 700 mA via the micro USB port 

4. Models: Raspberry Pi 1 Model A (retired), Raspberry Pi 1 Model B (retired), Raspberry Pi 1 Model A+, 

Raspberry PI 1 Model B+, Raspberry Pi 2 Model B 

Note:  Simulink currently only supports Raspberry Pi 1 Model B & Model B+, and Raspberry Pi 2 Model B 

 

Troubleshooting Tips for Common Issues: 

 

1. Are there different versions of the Support packages?  How do I know what version of a Support 

package I have?  How do I update my Support Package? 

a.  Yes, in some cases there are updates to Support Packages 

b. To check the version of your support package is up to date, start the support package installer  

and check the version as shown below: 

 
c. You can click Update check box and Next to update the support package. 

 

http://www.raspberrypi.org/faqs
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2. What do I do with the cmd.exe windows? 

 

a. Close them by click on the red X in upper right once they say **Simulation finished** 

 

3. I get a “TCP 17725” error 

a. Usually this is because you are trying to download a model to the Rapsberry Pi that is already 

running a model (possibly from a prior “Deploy to Hardware” step). 

b. To workaround, try to: 

i. At the MATLAB prompt assign h = raspberrypi. This will create a Raspberry Pi object in 

MATLAB which can then communicate with the unit. 

ii. Type h.connect  at the MATLAB prompt which connects the object to the Raspberry Pi. 

iii. h.stop(‘BlinkLED1’) stops the program running (Use the name of the model that is running 

c. If this doesn’t work, or you do not know the name of the model that is running, power cycle the 

Raspberry Pi by unplugging the Micro-USB connector, waiting 5 seconds, and plugging it back in.  

It will take the Raspberry Pi about 45 seconds to fully reboot. 

d. Try to ping to verify your connection, and then run your model again. 

 

4. I get intermittent errors where the Raspberry Pi, webcam, or circuits stop working. 

a. This is likely due to being unable to source enough current/voltage to drive everything from the 

host computer USB port, especially after the voltage drop from the USB-Micro-USB cable. 

b. Workaround: You will need to purchase a USB power adapter (minimum 5V, 1A).  These are 

commonly available, and often used for Android devices. 

 

Appendix 4: Raspberry Pi Driving Hardware using GPIO Pins 

See document “Raspberry_Pi_Workshop_Manual_R201**_Appendix_4” for an advanced project on interfacing 

with the Raspberry PI GPIO pins, calling C Functions from Simulink, and calling C Function Libaries from Simulink 

(WiringPi). 
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Answers to Questions in Manual: 

Q: P2.1: What happens when you change the constant 255 to other values? 

A: P2.1: You see the colours changing as the numbers representing the bitmap change. Sometimes you see 

massive changes in colour which is because the numbers are uint8 and you get wrap around in the arithmetic. 

 

Q: P2.2.1: Step 3: Note that all of the computations are to be performed in uint8.   

a. How would you ensure that the output of the blocks are of the correct type at the end of each block 

computation?  Hint: Display > Signals & Ports > Port Data Types 

b. Why should the value of Gain be 255 to display a binary image? 

c. How would you ensure that the Add block does not overflow? 

A: P2.2.1: Step 3: 

a. In the signal attribute tab of each block examine the Output data type.  Where appropriate you can 

change it to uint8 or select one of the “inherit” options.  On input side, if appropriate, you can select the 

check box require all inputs to have same data type. Simulink allows many degrees of freedom in how 

the computations are performed. 

b. 255 

c. You can select Saturate on integer overflow tick box in Signal Attributes tab 

 

Q: P3.5:  

1. How do the results of step 8 above using the simplified algorithm compare with the reference model?  

2. How would you measure the difference? What you could do to minimize it? 

3. Would it be possible to simplify further the edge detection algorithm?  

A:  P3.5: 

1. Generally speaking, the results are different because of the different edge detection implementations. 

2. The difference may be computed as the mean value of the absolute difference (mean error) of the two 

processed images. To minimize the difference, one could run multiple simulations and identify the 

minimum mean error by storing its value against varying threshold values of the two algorithms.  

3. The above formula simplifies the computation of the gradient vector magnitude by approximation, 

hence reducing the computational load.  

 

Q: P3.6:  

a. How can you reduce the video input frame rate for your edgeDetectionFilter_RPi.slx model? 

b. What you think it would be the maximum video input frame rate avoiding overruns? How would you verify 

that? 

A: P3.6:    

a. Double click V4L2 Video Capture block. The sample time parameter from 1/fps sets the input frame rate 

(fps = 12 in Model Properties -> Callbacks -> PreloadFcn). Change 1/fps to something like 1/5. 

b. The maximum video input frame rate may be experimentally determined by running multiple 

simulations with different video input frame rates and the ‘Enable overrun detection’ flag checked. 


