ROADMAP & CHALLENGES FOR AUTONOMOUS DRIVING
自动驾驶技术路线与挑战
Created leading portfolio of advanced technologies
Global Mobility & Services Capabilities

UNMATCHED POSITION IN MOBILITY & SERVICES WITH DEEP CAPABILITIES IN SOFTWARE DEVELOPMENT, AUTOMOTIVE GRADE INDUSTRIALIZATION AND SYSTEMS INTEGRATION

- ~50 PhDs in applicable fields
- 250+ engineers devoted to automated driving
- ~70 cars today with 150+ on the road by end of 2018
- 10M controllers with embedded OTA by 2020

Locations:
- Mountain View
- Pittsburgh
- Boston
- Wolfsburg
- Singapore
- Shanghai
Urban Mobility CHALLENGES by 2050

- +70% Of Population
- +40% freight
- 5x Emissions
- 4x Cost
- 3x Travel time

BENEFITS of mobility automation to cities

- 28% Fewer Vehicles
- 87% Fewer Accidents
- 66% Lower Emissions
- 44% Fewer Parking Spaces
- 30% Shorter Travel Time
Commercial applications will be first to market and pave the way for consumer applications

Economics
- Adoption driven by economics rather than just safety or convenience (autonomous mobility on demand, ...)

Regulatory / legal environment
- Simplified regulatory and legal environment at the local level vs. federal/state

Use cases
- Limited use cases in commercial applications in contrast with the consumer market – geofenced areas with tele-operations and infrastructure support

Aptiv focused on deploying in AMoD market to develop and validate products and technologies for OEM market
Autonomous driving technology overview

What do I see?

Sensing & Perception:
- RADAR PROCESSING
- LIDAR PROCESSING
- VISION PROCESSING
- V2X
- LOW LEVEL FUSION
- HIGH LEVEL FUSION
- WORLD MODEL AND SEMANTIC/INTENTION MODEL
- LOCALIZATION

Where do I go?

Planning & Policy:
- PLANNING
- POLICY
- BEHAVIOR
- DUAL SOFTWARE STACK: Ottomatika & nuTonomy

Let’s go!

Vehicle Control:
- VEHICLES DYNAMICS / CONTROL
- DYNAMIC MODELING
- OTHER VEHICLE INTERFACES
Sensing and perception: Why autonomous driving needs all three modalities

<table>
<thead>
<tr>
<th></th>
<th>RADAR</th>
<th>LiDAR</th>
<th>CAMERA</th>
<th>FUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object detection</td>
<td>+</td>
<td>+</td>
<td>○</td>
<td>+</td>
</tr>
<tr>
<td>Pedestrian detection</td>
<td>○</td>
<td>○</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Weather conditions</td>
<td>+</td>
<td>○</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Lighting conditions</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Dirt</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Velocity</td>
<td>+</td>
<td>-</td>
<td>○</td>
<td>+</td>
</tr>
<tr>
<td>Distance – accuracy</td>
<td>+</td>
<td>+</td>
<td>○</td>
<td>+</td>
</tr>
<tr>
<td>Distance – range</td>
<td>+</td>
<td>○</td>
<td>○</td>
<td>+</td>
</tr>
<tr>
<td>Data density</td>
<td>○</td>
<td>○</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Classification</td>
<td>○</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fusion of the three modalities delivers the most robust, safest system
L1 – Simple Architecture
L4 – Future Architecture
Planning and behavior software is the core of the autonomous driving system

Need for planning and behavior software
- Planning creates the “path” for the vehicle to drive along
- Leverages both long-term plans (“where am I going”) as well as near-term planning (milliseconds)
- Enables vehicles to have “look and feel” of humans on the road
- Follows traffic rules, understands and learns from how humans behave

Case for two redundant software stacks

- **Automotive grade functional safety** requires fully redundant software stacks for fail-operational capability
 - Separate world model, path planning, and behavior and arbitrating control system required
- Two redundant software stacks provides performance benefit over one stack and therefore faster time to market
- Two redundant software stacks becoming **automotive industry standard**

Automotive-grade autonomous driving software solution requires mix of deep robotics and automotive functional safety capabilities
Developing an autonomous driving platform

Autonomous Driving Technology
Sensors, compute platform, software

Vehicle Platform
Partner to deliver vehicle chassis, shell
- 2018-2019: Passenger vehicle
- 2020+: Custom vehicle built for mobility

Aptiv Autonomous Driving Platform

Aptiv cloud elements/ infrastructure and APIs to external partners

Mobility Cloud

Platform to integrate urban and intrastate mobility services to deliver end-to-end solution

Infrastructure

Aptiv Overview Presentation | February 2018 | Aptiv
THANK YOU