Establishing Development Process and Automation

MathWorks
Consulting Services Group
Today’s Agenda

- Verification Activities in MBD
- Automation of Model Verification Activities
 - Model Testing with Simulink Test
- Build Automation of Generated Code and Legacy Code Integration
- Automation of Polyspace Code Verification
 - Coding Standard Checks
 - Formal Verification (Absence of Run-Time Error)
- Questions and Answers
Verification Activities in MBD

- **Model Verification**
 - **Design Review**
 - Requirement Traceability
 - Report Generation
 - **Static Analysis**
 - Model Standards Checking
 - Design Error Detection
 - Prove Design Correctness
 - **Dynamic Test**
 - Simulation-based Functional Test
 - Coverage Analysis
 - Simulink Test
Verification Activities in MBD (cont’d)

- **Code Generation and Verification**
 - Code Review
 - Code Generation Report
 - **Static Analysis**
 - Code Metrics and Coding Rule Checking
 - Formal Verification (Abstract Interpretation)
 - **Equivalence Test**
 - SIL(Software-In-the-Loop) and PIL(Processor-In-the-Loop)
Motivation

New Users / Early stage MBD adoption

- Map and Prioritize Processes
- Model Architecture Establishment and Review
- Tool implementation support

Advanced Users / Continuous verification

- Automate various verification activities
- Continuous model and code review reports
Model-Based Design for ISO 26262 ASIL D Safety Functions

- Observations
 - Many of the advanced analysis and design techniques called out by the standard are manually intensive to perform using traditional methods
 - e.g. Range checks of input/output data, Diverse SW Design, Prototype generation
 - Model-Based Design supports many of methods called out by the standard and provides automation to further reduce the manual effort
Adopting Capabilities to Optimize Model-Based Design for ISO 26262
CI Tool Integration with MBD

- CI Tool (Jenkins) Integration for Model Based Verification Activities
 - Automation of Modeling Testing
 - Build Automation for Code Integration (Generated Code and Legacy Code)
 - Automation of Polyspace Code Verification
 - Coding Standard Checks
 - Formal Verification (Absence of Run-Time Error)
Integration with CI Tools: Environment and Workflow

1. Regular (ex. 10PM every day) update developers’ model from SVN repository
2. Automatically trigger MATLAB application
3. Regular Test Reports
Automation of Model Verification
Motivation
: Model Verification (Simulink Test)

- Continuous Model Verification Test
 - Tedious repetitive tests
 - Pre-defined test scenarios
 - Simulation vs expected behaviors by test scenario
 - Regression test
 - Result analysis
 - Simulink Test Report
 - EARLY detected potential bugs
Automated Model Testing with Jenkins

DEMO
Continuous Integration Builds
Motivation
: Daily build / Continuous integration builds

- The practice of each day doing software build of the latest version
 - Compiled to ensure all required dependencies are present
 - *Build* is the results of compiling and linking
 - Particularly necessary in large organizations
 - New bugs that shows up as a results of work done within the last day
Motivation
: Daily build / Continuous integration builds

Basic Software
- Hand Written Code

Application Software
- Model Generated Code

Interface integration (Input, Output and Parameters)
Early Detection through continuous integration builds
Binary and a2l file generation
Build Automation with Jenkins

DEMO
Automation of Polyspace Code Verification
Motivation
: Code Verification (Polyspace)

- Continuous Code Verification Test
 - *Pre-defined* compliance with Coding Standards
 - Reduce Test Cycles by Fixing Bug early
 - Provide detailed information on what caused the defect
 - Tracing Code Analysis Results to Simulink Models
 - Code Metrics and Monitor Software Quality
 - Progress of software quality
Automated Polyspace Code Verification with Jenkins

DEMO
Conclusion

Productivity Improvement Dynamics

Cumulative Value

Time

Ideal (no cost)

+ Tools

+ Consulting

+ Tools

Status Quo

→ Speed Return on Investment in technology