
1© 2015 The MathWorks, Inc.

What’s New for Automotive

2

What’s New for Simulink in R2018b

3

Connect a recommended block to an

existing block in your model, sorted by

frequency of use

▪ Speed up model creation by limiting your

search to only those blocks that can be

connected to existing block ports

▪ Recommendations based on the example

models included in your installation and can

be customized with your own models

▪ Take advantage of the knowledge contained

in your organization’s existing working library

of models

Predictive Quick Insert

4

Block Parameter Autocomplete

▪ Displays variables from visible workspaces

and dictionaries

▪ Provides additional information in a table to

help with selecting a particular entry

▪ Use in both block dialogs and Property

Inspector

Improve speed and accuracy of block

parameter editing by selecting from suggested

variable or function names ​as you type

5

Direct Editing on Icon

▪ Change a subset of block parameters

directly on the block mask

▪ Works with the following blocks: Constant,

From Spreadsheet, From Workspace, To

Workspace, From File, To File

Edit block parameters and subsystem

port labels directly in the Simulink
Editor

6

Arrange System

▪ Produces a left to right flow of

signal information

▪ Resizes blocks such as gains so

that variable names can be clearly

seen

Automatically move and resize the

blocks in your model to create cleaner
looking diagrams

BEFORE AFTER

7

Archiving runs in Simulation Data Inspector

▪ Plots automatically update to show current

run at start of simulation – similar to how

scopes behave

▪ All runs available in a new archive region at

the bottom

▪ Option to limit disk space used by

configuring maximum number of runs to

archive

Focus on your current simulation while

retaining older runs

8

Buses

▪ Package multiple Simscape connection lines

together into a bus

▪ Retain non-virtual buses within a virtual bus.

▪ No need to convert all to virtual or non-

virtual buses, resulting in less data copies in

generated code

Create buses from Simscape physical

connection lines and retain arrays of buses
and nonvirtual buses within virtual buses

9

Execution Domain Specification

▪ Improve simulation speed and code quality by

reducing number of hybrid systems and solver

switches in your model

▪ Set a subsystem to discrete quickly and enforce

that it remain discrete

▪ Automate frame sizing, execution scheduling,

and multi-threading acceleration for DSP

subsystems with Dataflow

▪ Enforce discrete library blocks in Simulink to

always have discrete rates

Improve your solver performance and

code by specifying the domains of

subsystems within your model

10

Batch Simulations

▪ Run parallel simulations in batch mode

▪ Similar to parsim, batchsim automatically

takes care of parallel configuration steps for

you

▪ batchsim is interchangeable with parsim

Offload execution of simulations to run
in the background by using batchsim

11

Project-wide Bus Renaming

▪ Find all usages of a bus or bus element in a

Simulink Project

▪ Automatically update those usages when

renaming

▪ Prompts to update when renaming in the

Bus Editor

Automatically update all bus references

across Simulink Project when you

rename a bus or bus element

12

Model Comparison

▪ Create custom block and

parameter filters for the

comparison report

▪ Export and import filters to share

them with colleagues

Use custom filters to simplify and focus

model comparisons

13

C Caller Block

▪ Simpler alternative to S-function Builder and

Legacy Code Tool for calling a function

written into C

▪ Changes in C function source file

automatically captured when rebuilding

model

▪ Supports simulation and code generation

Call external C functions directly from

the model

14

Project References

▪ View all references in a deep hierarchy

▪ View project and modified files for a selected

reference

▪ Better workflow with new toolstrip

Explorer the full project reference

hierarchy and associated files directly

from your Simulink Project

15

Custom Gauge Block

▪ New Dashboard block to create gauges with

a customized appearance

▪ Choose the background image, needle

image, arc, arc color, arc transparency

Create a gauge with a fully customizable

appearance

16

Maps in the Simulation Data Inspector

▪ GPS latitude and longitude coordinates used

to display location on a 2-D street map

▪ Position on map synchronized with

simulation data

▪ Path history shown on map

View synchronized map and signal data

in the Simulation Data Inspector

17

What’s New for Simulink Requirements in R2018b

18

External Rich Text Editor

▪ Spell-check requirements content

▪ Resize images

▪ Insert and edit equations

▪ Insert and edit tables

▪ Available for Description and Rationale

Use text editing and formatting features

of Microsoft Word to author and edit

rich text requirements

See: Author and Edit Requirements Content by Using

Microsoft Word

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slrequirements/ug/author-requirements-in-simulink.html#mw_ccc4e07e-da7f-4060-bba2-4e9fecc0e323

19

Customizable Types for Requirements and Links

▪ Requirement type has been introduced for

classifying requirements

– Predefined types include Functional,

Container, Informational

▪ Requirement and Link types are

customizable through sl_customization.

▪ Roll-up status for implementation and

verification statuses are computed based on

specified requirements and links

Define custom requirement and link

types for improved classification and

analysis

See Define Custom Requirement and Link Types

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slrequirements/ug/define-custom-requirement-and-link-types.html

20

Incoming Link Resolution

▪ All the link sets related to your requirements

sets are loaded automatically when you load

the source and destination artifacts

▪ Link information for any artifact is kept in

memory as long as there as there is an

artifact referring to this link information.

▪ Currently works for Simulink Projects only

Automatically load and display

incoming links when opening artifacts

stored in Simulink Projects​

See Manage Requirements Across a Team

ReqSetA

Implements

Test Manager

Verifies

ReqSetHig

h

Derives

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slrequirements/ug/manage-requirements-across-a-team-by-using-projects-1.html

21

DOORS Next Generation (DNG) Traceability with

Configuration Management Enabled

▪ Link with versions of artifacts in "streams"

and "change sets".

▪ View incoming links from Simulink using

dashboard in DNG.

▪ Batch redirect existing links to another

stream or changeset in the project

Create traceability between design and

configuration-enabled DOORS Next

Generation project

See Requirements Traceability with IBM

Rational DOORS Next Generation

Simulink

dashboard in

DNG

Configuration

selector in MATLAB

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slrequirements/ug/requirements-traceability-with-ibm-rational-doors-next-generation.html

22

Saving view settings of Requirements Editor

▪ Save Requirements Editor or Requirements

Perspective setting across sessions

▪

Settings saved:

– Displayed columns for requirements and links

view, respectively.

– Item Sort Order

– Current view (Requirements View or Links

View)

▪ Export and import settings from a MAT-File

Saving view settings of Requirements

Editor and Requirements perspective

See View or Hide Columns in the Requirements Editor

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slrequirements/ug/author-requirements-in-simulink.html#mw_e89491ff-bf9c-490c-8681-a2547e611593

23

Other new features

▪ Simulink Requirements API support for Justification

– Use API to add justifications to complete Implementation or Verification rollup

▪ Export Requirement and Link Sets to Previous Version

– Exchange Requirement and Link Sets with other users running other versions

▪ Synchronization for non-unique Custom ID’s

– More flexibility to work with external requirements

▪ USDM Excel Import to Simulink Requirements

– Support importing from Excel following USDM format

– Allows for multiple rows per item, and unique IDs are not always in the same column.

24

What’s New for Simulink Check in R2018b

25

Metrics Dashboard Customization: Add Metric

Thresholds

▪ Categorize metric data into 3 categories -

Compliant, Warning, and Non-Compliant

▪ Aggregated Project status on the Metrics

Dashboard

▪ Find issues in the model through threshold

indications with metric details

Define and visualize thresholds to

increase actionability of metric data

See Customize Metrics Dashboard Layout and Functionality

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slcheck/ug/_mw_507f0672-2c57-4f04-8b46-de9315712ffe.html

26

Simscape Support with Clone Detection

▪ Detect duplicate modeling patterns or clones

in Simscape Models

▪ Refactor to replace these clones with links to

reusable library blocks

Improve maintainability and reuse of

Simscape Models

27

Simulink Metrics Dashboard - Layout Customization

▪ Reuse shipping graphical widgets &

visualizations

▪ Distribute custom layout across organization

▪ Create multiple views depending on project

phase

Update layout of dashboard by adding,

removing or customizing metrics

See Customize Metrics Dashboard Layout and Functionality

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slcheck/ug/_mw_507f0672-2c57-4f04-8b46-de9315712ffe.html

28

Additional Checks for High-Integrity Systems

Modeling and MAAB 3.0

▪ 18 new High Integrity Systems Modeling checks!

– 3 Stateflow Guidelines

– 9 Simulink Guidelines

– 6 MATLAB Function Block related guidelines

▪ New MAAB 3.0 check for number of function
calls in MATLAB Function blocks

▪ Existing DO-178C/DO-331, and EN 50128, IEC
61508, IEC 62304, and ISO 26262 check IDs
are renamed for better usability and consistency

Automate checking for MAAB 3.0 and

High-Integrity Systems Modeling

guidelines

» Documentation: Model Advisor Checks for

MAAB Guidelines

MAAB JMAAB

High

Integrity
MISRA

ISO/DO/IEC Security

Standards focus areas

https://www.mathworks.com/help/simulink/mdl_gd/maab/available-model-advisor-checks.html

29

JMAAB 4.01 Support

▪ 47 New checks are added for JMAAB 4.01!

– 23 Simulink Guidelines

– 24 Stateflow Guidelines

Automate checking of models to

JMAAB (Japan MATLAB Automotive

Advisory Board) 4.01 modeling style

guideline​​s

See: Model Checks for Japan MATLAB Automotive

Advisory Board (JMAAB) Guideline Compliance

https://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/slcheck/ug/model-checks-for-japan-mbd-automotive-advisory-board-jmaab-guideline-compliance.html

30

New JMAAB Checks (Slide 1 of 2)

See Release Notes for additional changes in checks

Model Advisor Check Addresses Guideline

Check block orientation mathworks.jmaab.jc_0110

Check usable characters for signal names and bus names mathworks.jmaab.jc_0222

Check usable characters for parameter names mathworks.jmaab.jc_0232

Check length of model file name mathworks.jmaab.jc_0241

Check length of folder name at every level of model path mathworks.jmaab.jc_0242

Check length of subsystem names mathworks.jmaab.jc_0243

Check length of Inport and Outport names mathworks.jmaab.jc_0244

Check length of signal and bus names mathworks.jmaab.jc_0245

Check length of parameter names mathworks.jmaab.jc_0246

Check length of block names mathworks.jmaab.jc_0247

Check if blocks are shaded in the model mathworks.jmaab.jc_0604

Check operator order of Product blocks mathworks.jmaab.jc_0610

Check icon shape of Logical Operator blocks mathworks.jmaab.jc_0621

Check for parentheses in Fcn block expressions mathworks.jmaab.jc_0622

Check usage of Memory and Unit Delay blocks mathworks.jmaab.jc_0623

Check usage of Lookup Tables mathworks.jmaab.jc_0626

Check usage of the Saturation blocks mathworks.jmaab.jc_0628

Check Signed Integer Division Rounding mode mathworks.jmaab.jc_0642

Check type setting by data objects mathworks.jmaab.jc_0644

Check if tunable block parameters are defined as named constants mathworks.jmaab.jc_0645

Check prohibited comparison operation of logical type signals mathworks.jmaab.jc_0655

Check default/else case in Switch Case blocks and If blocks mathworks.jmaab.jc_0656

Check usage of Merge block mathworks.jmaab.jc_0659

31

New JMAAB Checks (Slide 2 of 2)

See Release Notes for additional changes in checks

Model Advisor Check Addresses Guideline

Check for unused data in Stateflow Charts mathworks.jmaab.jc_0700

Check first index of arrays in Stateflow mathworks.jmaab.jc_0701

Check execution timing for default transition path mathworks.jmaab.jc_0712

Check for parallel Stateflow state used for grouping mathworks.jmaab.jc_0721

Check scope of data in parallel states mathworks.jmaab.jc_0722

Check uniqueness of State names mathworks.jmaab.jc_0730

Check usage of State names mathworks.jmaab.jc_0731

Check uniqueness of Stateflow State and Data names mathworks.jmaab.jc_0732

Check repetition of Action types mathworks.jmaab.jc_0734

Check if each action in state label ends with a semicolon mathworks.jmaab.jc_0735

Check indentation of Stateflow blocks mathworks.jmaab.jc_0736

Check uniform spaces before and after operators mathworks.jmaab.jc_0737

Check comments in state actions mathworks.jmaab.jc_0738

Check updates to variables used in state transition conditions mathworks.jmaab.jc_0741

Check boolean operations in condition labels mathworks.jmaab.jc_0742

Check condition actions in Stateflow transitions mathworks.jmaab.jc_0743

Check for unexpected backtracking in state transitions mathworks.jmaab.jc_0751

Check usage of parentheses in Stateflow transitions mathworks.jmaab.jc_0752

Check condition actions and transition actions in Stateflow mathworks.jmaab.jc_0753

Check prohibited use of operation expressions in array indices mathworks.jmaab.jc_0756

Check starting point of internal transition in Stateflow mathworks.jmaab.jc_0760

Check prohibited combination of state action and flow chart mathworks.jmaab.jc_0762

Check usage of internal transitions in Stateflow states mathworks.jmaab.jc_0763

Check usage of transition conditions in Stateflow transitions mathworks.jmaab.jc_0772

32

New Check Authoring Style with automated reporting

capabilities

▪ Subsystem view organizes the flagged

model by subsystem

▪ Block view organizes the flagged model

components by block

▪ Reports provide a recommended action and

hyperlinks to model component

View and manage check results by

subsystem or block

Subsystem View

Blocks View

33

New High-Integrity Systems Modeling Checks

See Release Notes for additional changes in checks

Model Advisor Check Addresses Guideline

Check usage of standardized MATLAB function headers mathworks.hism.himl_0001

Check if/elseif/else patterns in MATLAB Function blocks mathworks.hism.himl_0006

Check switch statements in MATLAB Function blocks mathworks.hism.himl_0007

Check usage of relational operators in MATLAB Function blocks mathworks.hism.himl_0008

Check usage of equality operators in MATLAB Function blocks mathworks.hism.himl_0009

Check usage of logical operators and functions in MATLAB Function blocks mathworks.hism.himl_0010

Check for inappropriate use of transition paths mathworks.hism.hisf_0014

Check naming of ports in Stateflow charts mathworks.hism.hisf_0016

Check scoping of Stateflow data objects mathworks.hism.hisf_0017

Check usage of conditionally executed subsystems mathworks.hism.hisl_0012

Check usage of Merge blocks mathworks.hism.hisl_0015

Check usage of Bitwise Operator block mathworks.hism.hisl_0019

34

Other New Features

▪ High Integrity Systems Modeling Checks: Use the additional conditions to

check the configuration parameters ​​​​

▪ Modifications to existing Model Advisor checks that you use to verify

compliance with MISRA C:2012 and Secure Coding standards

▪ Mnemonic Support: Use keyboard shortcuts with Metrics Dashboard

35

What’s New for Simulink Coverage in R2018b

36

Stateflow/eML Custom Code Coverage

▪ Works with both mex and JIT-ed

Stateflow machine

▪ Seamless integration with the Model

Coverage API

Enable code coverage collection on

Stateflow/eML custom code call

37

▪ Works with both mex and JIT based

execution

▪ Seamless integration with the Model

Coverage API

Enable code coverage collection on the

new C Caller block

C Caller Block Code Coverage

38

Parallel Simulation: Collect Coverage When Using parsim

▪ Set SimulationInput:

in = Simulink.SimulationInput(gcs)

in.setModelParameter('RecordCoverage', 'on’)

in.setModelParameter('CovSaveSingleToWorkspaceVar', 'on’);

▪ Get coverage data from SimulationOutput:

>>simOut = parsim(in)

ans =

Simulink.SimulationOutput:

yout: [1x1 Simulink.SimulationData.Dataset]

covdata: [1x1 cvdata]

SimulationMetadata: [1x1 Simulink.SimulationMetadata]

ErrorMessage: [0x0 char]

39

Coverage Visualization inside Simulink Editor

Hover

Click

40

Simulink Code Coverage Filter API

▪ Filtering choices for coverage justification or exclusion for:

– File

– Function

– Decision

– Condition

▪ Support for the CFunctionCaller block, SF/eML custom code and SIL/PIL

Extend the existing Simulink Coverage Filter API for code coverage

% Create a filter for a particular function

>> s = slcoverage.CodeSelector(slcoverage.CodeSelectorType.Function, 'counterbus.c', 'counterbusFcn’);

% Create a filter for a particular decision

>> s = slcoverage.CodeSelector(slcoverage.CodeSelectorType.Decision, 'counterbus.c', 'counterbusFcn’, 'inputGElower', 2);

% Create all the possible code filters for Software-in-the-Loop based coverage collection

>> selectors = slcoverage.Selector.allSelectors(model, ‘SimulationMode’, ‘sil’);

41

Automatic Code Filter Rules Creation From

Code Prover Results

▪ Allow to automatically justify code

detected as not reachable by Code

Prover

▪ Apply to:

– Function that are never called

– Expression that are not reachable or always

evaluate to true or false

▪ Require a BF license for reading the

results

Automatically generate justification

rules for dead-logic using

Polyspace Code Prover results

ps_results.pscp

1) Launch CP

2) Generate Results

3) Select Results

4) Auto Import

Filter rules

42

What’s New for Simulink Coverage in R2018b

43

Microsoft Excel® -Based Testing

▪ Generate a template test spreadsheet from

any model or harness (SUT)

▪ Specify test case input data, output data,

tolerances, and parameters using the

template

▪ Fill data into spreadsheet and import into

Simulink Test as a test case

Define test cases in Excel spreadsheets

using templates

See Author a Test in Excel and Create Test with Data from Excel

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/sltest/ug/_mw_b7a5cbde-9f37-477b-8452-151b9b4d14e6.html
http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/sltest/ug/create-test-with-data-from-excel-1.html

44

C Caller Block Support

▪ C Caller block allows you to call a C function

directly from a model

▪ Test the C function by creating a test

harness for the C Caller block

▪ Author, manage and execute tests of the C

function with Simulink Test

Verify model and hand code together

» Example: Code Verification with Simulink Test

Handwritten C Code

Test Harness

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/sltest/examples/custom-c-code-verification-with-simulink-test.html

45

SystemVerilog Assertions

▪ Include verify statements in Test Sequence

blocks and Test Assessment blocks

▪ Generate DPI component with HDL

Verifier™ mapping to the verify statements

▪ Use the SystemVerilog DPI component in

your HDL test environment.

Assess model behavior in your HDL test

environment

» See Generate SystemVerilog DPI Component from verify Statement

Simulation emits a warning if the verify assessment fails

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/hdlverifier/ug/generate-systemverilog-dpi-from-simulink-tests-verify-statement.html

46

Lane-Following Algorithm Testing Example

▪ Author tests in Simulink Test to verify safe

operation for each requirement

▪ Use the model verification blocks to verify

the algorithm

▪ View test results linked to high level test

requirements in Simulink Requirements

Learn how to apply requirements-based

testing for an automotive lane-following

system

See Testing a Lane Following Controller

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/sltest/examples/testing-a-lane-following-controller.html

47

Additional Features

▪ Test harness support for string data types

▪ Testing with MATLAB Unit Test
– Specify the location to save the HTML model coverage report

– Produce model coverage results in a format compatible with continuous integration
systems such as Jenkins™. See Tests for Continuous Integration

– Publish Test Manager results in the MATLAB® Test Report,

▪ Unified Scheduling Options
– Generate scheduler for modeling styles including export function models and rate-

based models

▪ Ability to overwrite simulation output results

http://www-jobarchive.mathworks.com/Bdoc18b/latest_pass/matlab/help/sltest/ug/tests-for-continuous-integration.html

48

What’s New for Simulink Design Verifier in R2018b

49

Export function models

▪ Automatically create schedulers for analysis
– Periodic export-function

– Asynchronous export-functions

▪ Leverage harness creation from SL Test

Simulink Design Verifier supports export

function models

G
e
n

e
ra

t

e

50

SLDV support for Stateflow custom code

▪ Supports test generation and property proving

▪ Test generation includes C/C++ test coverage objectives

▪ To enable:

set_param(<model>, ‘SimParseCustomCode’, ‘on’,…

‘SimAnalyzeCustomCode’, ‘on’)

Allow using SLDV on models containing

Stateflow custom code

51

▪ Supports test generation and property proving

▪ Test generation includes C/C++ test coverage objectives

▪ To enable:

set_param(<model>, ‘SimParseCustomCode’, ‘on’,…

‘SimAnalyzeCustomCode’, ‘on’)

SLDV support for the C Caller Block

Allow using SLDV on models containing

C Caller Blocks

52

Improved Precision for Floating-point Analysis

▪ Reduces occurrences of analysis results

impacted by rational approximation, such as

– unsatisfiable under approximation

unsatisfiable

– undecided with testcase satisfied

– undecided due to nonlinearity satisfied

▪ Analysis may take more time and memory due

to the bit-precise refinement phase

▪ Single-precision floating point only support in

Reduce impact of rational

approximation on analysis results

53

Floating point Design Errors

▪ New design error checks for floating point

computations

▪ Analysis may take more time and memory

due to the refinement phase

Detect computation of +/-Infinity, NaN

and subnormal values

54

Better Precision for Lookup Table analysis

▪ Better precision for derived ranges

▪ Better precision for proven results by reducing

impact of approximations

– unsatisfiable under approximation unsatisfiable

– valid under approximation valid

Improve precision for lookup tables in

all analysis modes

55

Avoid Run-Time Diagnostic Errors from Multiport

Switch

▪ Generated test cases can be simulated

without runtime errors

▪ Help achieve better coverage from the

generated test suite

Generate test cases that do not trigger

multiport switch error diagnostic

56

Redesigned Status Reporting

▪ Simplify dead logic reporting making it

intuitive for user to understand its effect on

the design

▪ Indicate types like “State” and “Transition” as

part of item label and omit from descriptions

of coverage outcomes

Dead logic report simplification

57

Enhanced Automatic Test Case Generation for

Embedded Coder Generated Code

Continue enhancing automatic test case

generation for SIL code with Simulink

Design Verifier

▪ Leverage SLDV support for export function model

with root function-call inputs for SIL-based test

generation

▪ Support for Row-Major array layout

58

What’s New for Supporting AUTOSAR in R2018b

59

AUTOSAR Run-Time Calibration

▪ Map internal signals and states to
ArTypedPerInstanceMemory and

StaticMemory for run-time calibration

▪ You can also configure its name, mapping,

and other AUTOSAR properties, in the

Property Inspector

Configure Model Signals and States

with AUTOSAR “perspective”

Named or

Test Pointed

Signals

Blocks with

configurable

state

Autosar properties

for ArTypedPIM or

StaticMemory

60

AUTOSAR Run-Time Calibration

▪ Map model workspace parameters to

AUTOSAR component internal
SharedParameters and

ConstantMemory for run-time

calibration

▪ Additional AUTOSAR properties can

be set using the property inspector

Configure Model Parameters with

AUTOSAR “perspective”

61

Specify C type qualifiers for AUTOSAR static and

constant memory

▪ Use AUTOSAR

AdditionalNativeTypeQualifier to

specify C-type qualifiers for AUTOSAR

constant and static memory

▪ Import and export type qualifiers from

and to ARXML

▪ Generate code containing type

qualifiers

Customize generated code with C type

qualifiers to control compiler

optimizations

62

AUTOSAR Memory Sections

▪ Use SwAddrMethods to control

memory placement of AUTOSAR

functions and data

▪ Add SwAddrMethods in AUTOSAR

Dictionary

▪ Map SwAddrMethods to Runnables,

Runnable Data, Signals, States and

Parameters

▪ Generate C and ARXML with memory

section information

Author, edit and map AUTOSAR

SwAddrMethods

63

Improved Round-trip of ARXML file content and

structure

▪ Preserve ARXML file structure on

import (physical level interoperability)

▪ Preserve AUTOSAR element UUIDs

– If an imported element does not have a

UUID, none is created

▪ New elements exported to separate

file(s)

▪ New data types or interfaces exported

to separate ARXML files

Preserve imported ARXML file structure

for export

64

Generate code for models uses AUTOSAR platform

types

▪ Use AUTOSAR platform types e.g. sint8
instead of corresponding Simulink code
generation types, e.g. int8_T

▪ No need to configure Simulink replacement

types in the model

Generated code uses AUTOSAR

platform types

65

Powertrain Blockset

66

Powertrain Blockset

▪ Goals:

– Provide starting point for engineers to build good plant / controller models

– Provide open and documented models

– Provide very fast-running models that work with popular HIL systems

Lower the barrier to entry for Model-Based Design

67

Powertrain Blockset Features

Library of blocks Pre-built reference applications

68

Drivetrain Propulsion Vehicle DynamicsEnergy Storage

and Auxiliary Drive
Transmission Vehicle Scenario Builder

69

Reference Applications

▪ Full vehicle models (conventional, EV, multi-mode HEV, input power-split HEV)

▪ Virtual engine dynamometers (compression ignition, spark ignition)

70

Powertrain Blockset Value Proposition

▪ Open and documented library of component and subsystem models

▪ Prebuilt vehicle models that you can parameterize and customize

▪ Fast-running models that are ready for HIL deployment

71

Vehicle Dynamics Blockset

72

Vehicle Dynamics Blockset
New product (R2018a)

▪ Model and simulate vehicle dynamics in a virtual 3D environment

▪ Use Vehicle Dynamics Blockset for:

– Ride & handling: characterize vehicle performance under standard driving maneuvers

– Chassis controls: design and test chassis control systems

– ADAS / AD: create virtual 3D test ground for ADAS and automated driving features

Ride & handling Chassis controls ADAS / AD

73

Vehicle Dynamics Blockset Features

Library of blocks

Pre-built reference

applications

Game engine

74

Powertrain Wheels and Tires Steering

Vehicle Body Vehicle ScenariosSuspension

Block Library

75

Simulink

• Physics of vehicle

• Initialization of game engine

camera

Game Engine Co-Simulation

Unreal Engine

• Rendering / lighting

• Physics of non-Simulink

objects

• Collision detection

camera image, ground height, …

vehicle / camera location

76

Reference Applications

Vehicle Maneuvers

Analyze ride and handling on driving

maneuvers such as:

– Double-lane change

– Swept sine steering

– Slowly increasing steering

Scene Interrogation

Configure the interface to the 3D

environment

77

HIL Testing with UE

▪ Can you perform HIL testing with Unreal Engine running?

– Yes!, but UE visualization block doesn’t support code generation.

– Unreal Engine can run on host PC with GPU.

SL plant + controller Data collection

+ UE4

Speedgoat

Mobile Machine

78

Summary

▪ Vehicle Dynamics Blockset provides:

– Open and documented library of component and subsystem models

– Pre-built vehicle models that you can parameterize and customize

– Fast-running models that are ready for HIL deployment

– Interface to Unreal Engine

79

What’s New for Embedded Coder in R2018b

80

Defining Code Generation Behavior Without

Packages and Classes

▪ Coder dictionary

Code behavior are categorized

into various abstractions

81

Defining Code Generation Behavior Without Packages

and Classes

▪ Coder dictionary

Users can define named behavior

pattern within each category

All available customization in one

place for full specification

Govern by data model to ensure

correctness by design

Allow user specified usage

constraints (18b)

82

Defining Code Generation Behavior Without Packages

and Classes

▪ Coder dictionary

Overview and easy management of all

available named behavior patterns

83

Dictionary Defaults with Embedded Coder Dictionary

84

Direct Specification of Each Function Interface

• View all entry point functions in-canvas

• Configure prototype and memory section of each function

85

Uniform Function and Data Specification for All Modeling Styles

Periodic rate-based

Asynchronous functions

Mixed periodic and asynchronous

void CallEvery1s(void);

void CallEvery2s(void);

86

Row Major Code Generation

Column major layout Row major layout

P =

1 2

3 4

5 6

87

Row Major Code Generation and Multidimension

Indexing

Row major layout

P =

1 2

3 4

5 6

