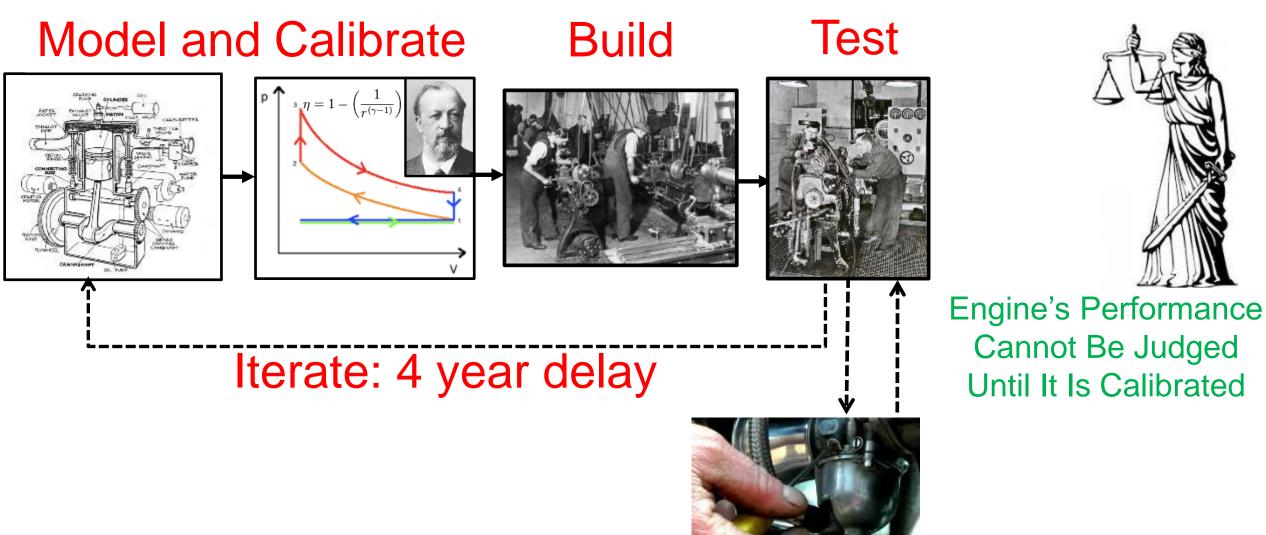


Virtual Engine Calibration Optimization (VECO)

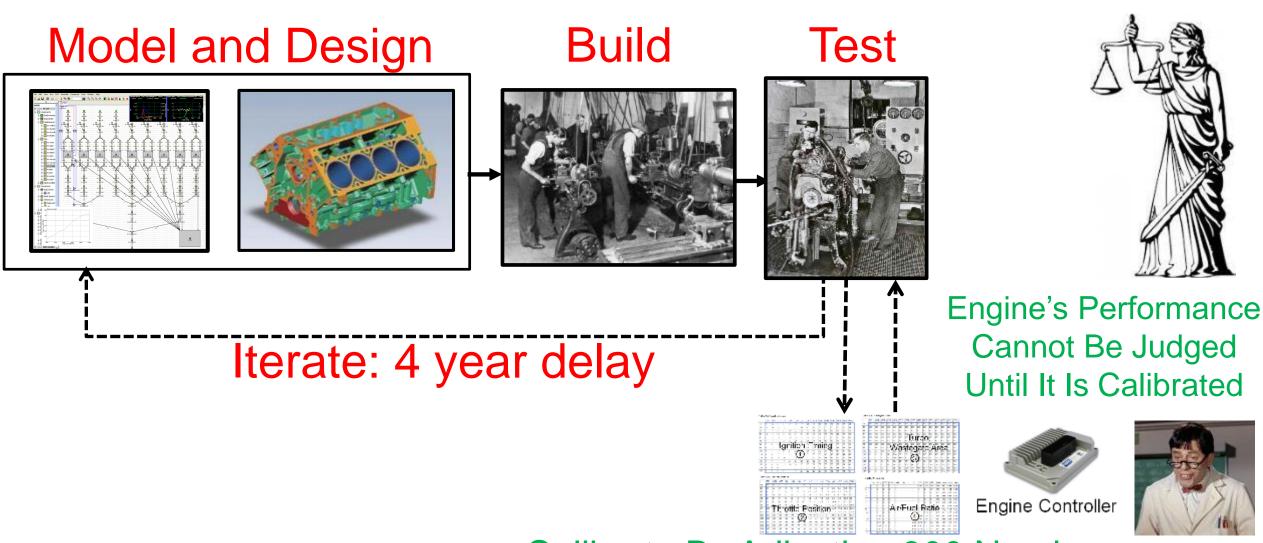
Pete Maloney
MathWorks Consulting
Novi Michigan USA Office


Outline

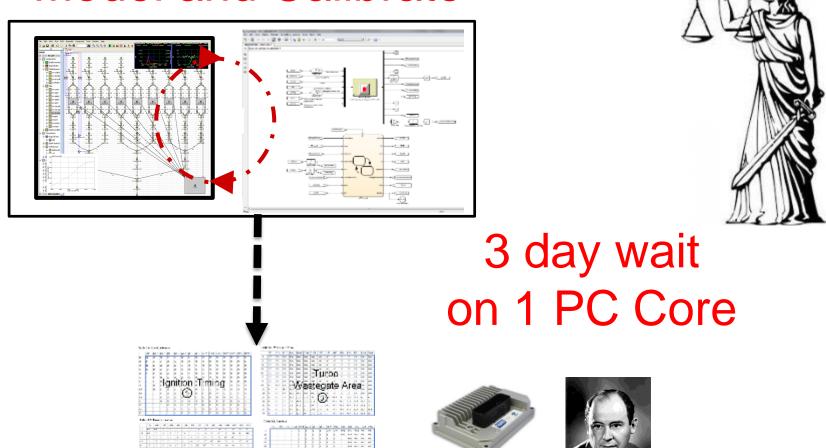
Calibration After Engine Build Slows Design Iterations By 4 Years

4 Year Design Iteration Delay Can Be Removed With Parallel Computing

What Was Base Engine Calibration?

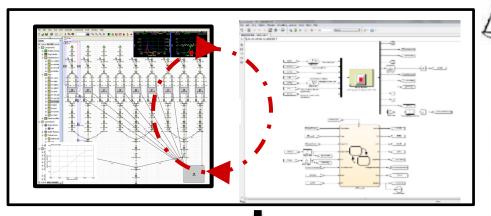


Cannot Be Judged Until It Is Calibrated

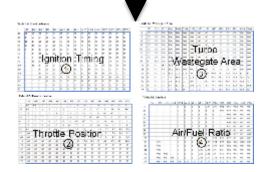

What Is Base Engine Calibration Now?

How Do We Speed Up Engine Design?

Model and Calibrate


Calibrate 900 Numbers via Numerical Optimization

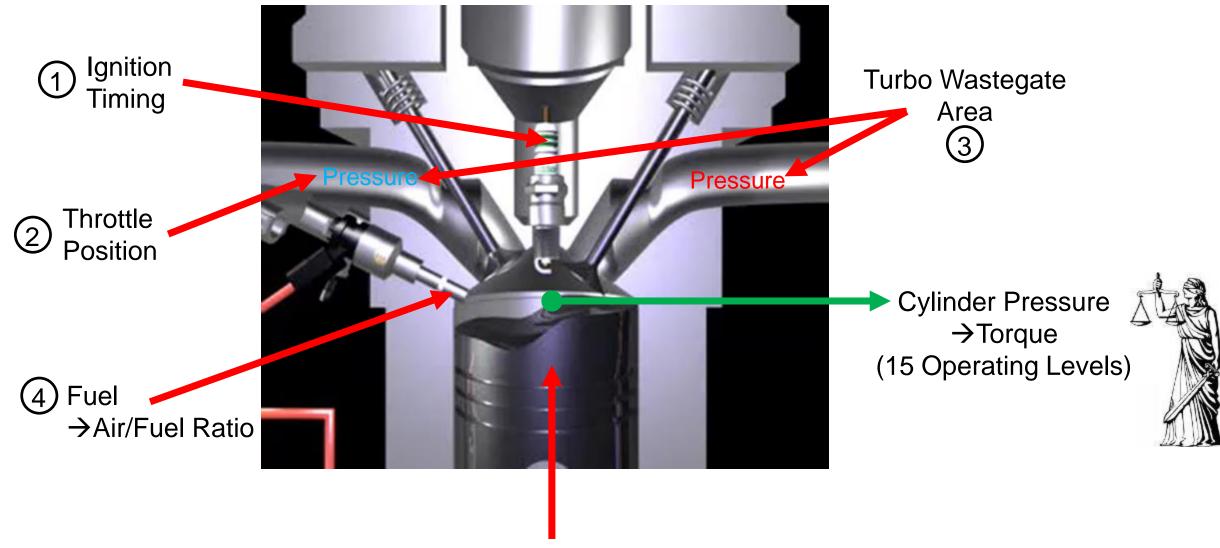
Engine Controller



How Do We Speed Up Engine Design?

Model and Calibrate

20 min wait 225 PC Cores



Base Engine Calibration Problem Addressed by VECO

Calibrations Produced By VECO Process

Table 3.6. Spark Advance

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	21	26	31	34	37	40	47	50	49	50	50	50	50	57	63
26	14	20	24	28	32	35	40	45	49	50	50	50	50	50	53
38	11	17	21	25	29	33	38	41	46	50	50	50	50	50	50
49	10	15	20	24	28	31	35	39	43	48	50	50	49	50	50
61	8	14	19	23	26	29	34	38	41	46	50	50	50	50	50
72	7	14	18	22	26	29	33	36	40	46	50	50			
84	7	8	18	A I	25	136	3	36	40	W.	17	40			-
95	0	13	17	"	35 j	J:U	抽目	36	42	44	46	4			3
106	0	15	17	21	24	27	31	36	41	42	43	45			
118	0	0	17	21	23	27	31	3.5	37	39	40	42	- 1		U_{I}
129	0	0	16	20	23	26	71	32	35	36	38	39	6		
141	0	0	11	19	23	26	29	29	32	34	35	37	- 5		
152	0	0	0	15	20	24	27	27	30	32	33	35		-	
164	0	0	0	2	17	22	24	24	28	29	32	34		_	-
175	0	0	0	0	4	17	21	22	25	27	30	32	n	in	

Table 3.4. Wastegate Area

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	1696	5000
15	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
26	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
38	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
49	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
61	100	100	100	100	100	100	100	100	MC C	1/0	100	100	100	100	100
-				100	100	100	100	100	100	100	100	100	100	100	100
	1	-		100	100	100	100	100	100	100	100	100	100	100	100
20,		8		100	100	POC	100 100		3	Φ	100	100	\mathbf{D}	100	100
		100	1	53.3	100	100	100	100	100	100	100	100	100	100	100
		m		19.2	36.6	50.9	60.2	81.5	100	100	100	100	100	100	100
4	100	"		10.4	21.6	31.9	40.7	53. D	63.9	69.9	74	76.4	79.5	82	84.4
				7.3	16.5	24.1	33.9	447	34.7	60.4	66.1	70.4	74.5	75.4	75.4
- 11	7			6.4	14.3	22	30.4	41.3	50.2	56.3	61.4	64.9	67.4	69.1	71.4
1				5.7	11.7	17.7	26.9	35.5	44.8	49.8	55.4	59.8	62.5	65.7	68.8
\cap	nt	r	116	3T	12.4	16	24.3	32.5	41	46.8	52.4	56.3	60.6	63.5	65.9

Table 3.2. Throttle Position

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	0.6	0.8	1.1	1.4	1.7	2	2.3	2.6	2.9	3.2	3.6	4	4.4	4.8	5.2
26	0.8	1.2	1.6	1.9	2.3	2.6	3	3.4	3.9	4.2	4.7	5.1	5.6	6.2	6.6
38	1.1	1.5	2	2.4	2.9	3.3	3.8	4.3	4.8	5.2	5.8	6.3	6.7	7.3	8
49	1.4	1.9	2.5	3	3.5	4	4.6	5.1	5.7	6.2	6.8	7.4	8	8.7	9.3
61	1.9	2.5	3.1	3.6	4.2	4.8	5.4	6.1	6.7	7.4	8.1	8.6	9.4	10.2	11
72	2.8	3.3	3.9	4.6	5.2	5.9	6.5	7.3	8	8.8	9.6	10.4	11.2	12.1	13
84	6.6	5.5	5.5	5.9	6.6	7.5	88	8.9	9.8	11	11.9	12.7	13.7	14.8	15.9
95	100	100	(A)	9	9.5	e	115	0	ŞI	40	110	16.2	17.4	18.8	20.2
106	100	100	100	100	25.3	17.2	16.9	16.5	2011	20.4	21.9	23.1	24.7	28	29.5
118	100	100	100	100	100	100	100	100	97.6	54.9	57	69.1	82.3	85	89.8
129	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
141	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
152	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
164	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
175	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

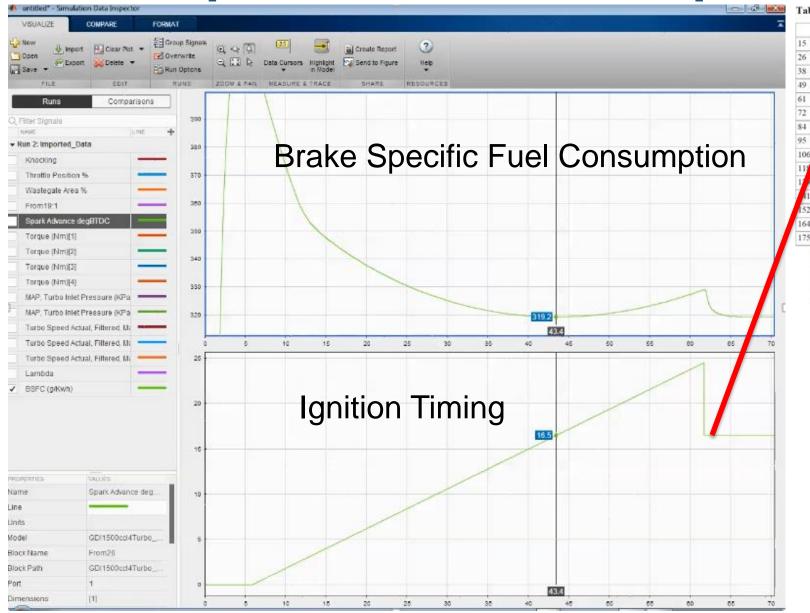
Table 3.8. Lambda

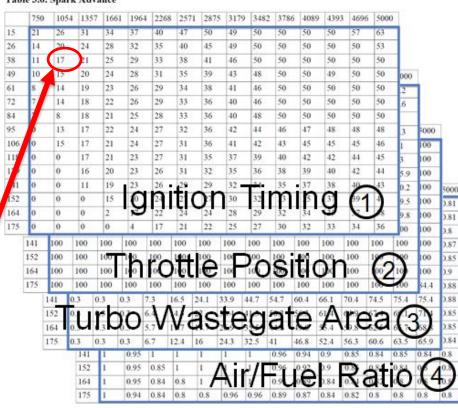
	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000
15	1	1	1	1	1	1	1	1	0.97	0.95	0.92	0.86	0.82	0.81	0.81
26	1	1	1	1	1	1	1	1	1	1	0.96	0.89	0.84	0.81	0.81
38	1	1	1	1	1	1	1	1	1	1	1	0.92	0.91	0.88	0.8
49	1	1	1	1	1	1	1	1	1	1	1	0.95	0.88	0.85	0.87
61	1	1	1	1	1	1	1	1	1	1	1	0.96	0.93	0.87	0.85
72	1	1	1	1	1	1	1	1	1	1	1	0.92	0.91	0.92	0.9
84	1	1	1	1 \Lambda	1	/ [1	<u>L</u>	1) ~	0.39	0.95	0.9	0.91	0.88
95	ı.	1	1		1	<i>/</i> -	ū	\mathbf{e}	1	1.97	0.97	0.9	0.92	0.91	0.88
106	1	1	1	1	1	1	1		1	0.98	0.91	0.92	0.9	0.85	0.85
118	1	0.95	1	1	1	1	1	Δ	0.96	0.94	0.92	0.86	0.85	0.88	0.85
129	ı.	0.95	1	1	1	1	1	YJ.	0.97	0.93	0.87	0.84	0.86	0.85	0.84
141	ı.	0.95	1	1	1	1	1	0.96	0.94	0.9	0.85	0.84	0.85	0.84	0.8
152	1	0.95	0.85	1	1	1	1	0.96	0.92	0.9	0.86	0.84	0.84	0.8	0.8
164	1	0.95	0.84	0.8	1	1	1	0.93	0.89	0.84	0.84	0.82	0.8	0.8	0.8
175	L .	0.94	0.84	0.8	0.8	0.96	0.96	0.89	0.87	0.84	0.82	0.8	0.8	0.8	0.8

15 Engine Speeds

X

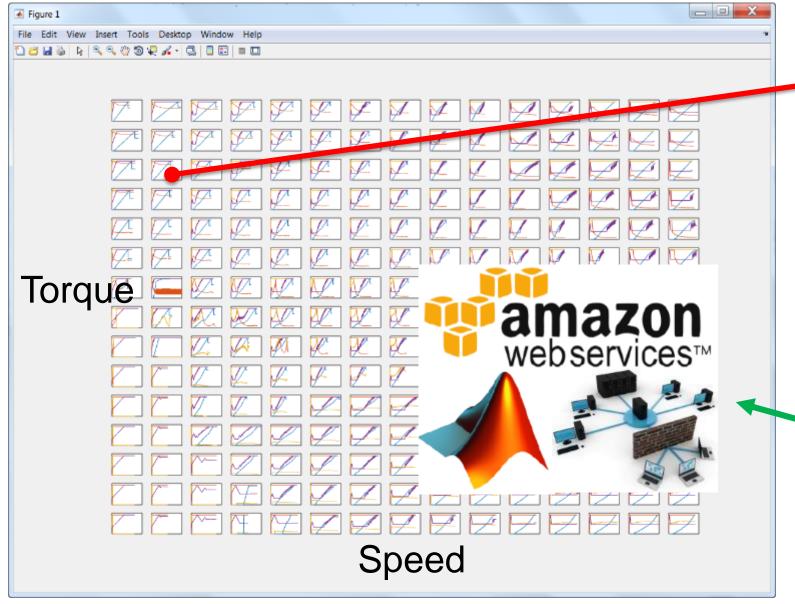
15 Engine Torques


X


4 Variables

900 Calibration Values

Example VECO At One Operating Point



1.5L SI DOHC I4 GDI Dual VCP Turbo Application Example

Parallel Computing Used for 225x Speed-Up

	750	1054	1357	1661	1964	2268	2571	2875	3179	3482	3786	4089	4393	4696	5000			
15	21	26	31	34	37	40	47	50.	49	50	50	50	50	57	63	1		
26	14	20	24	28	32	35	40	45	49	50	50	50	50	50	53	1		
10		17		25	29	33	38	41	46	50	50	50	50	50	50	1		
49	10	15	20	24	28	31	35	39	43	48	50	50	49	50	50	000		
61	8	14	19	23	26	29	34	38	41	46	50	50	50	50	50	2	1	
72	7	14	18	22	26	29	33	36	40	46	50	50	50	50	50	6	1	
84	7	8	18	21	25	28	33	36	40	48	50	50	50	50	50		1	
95	0	13	17	22	24	27	32	36	42	44	46	47	48	48	48	3	5000	
106	0	15	17	21	24	27	31	36	41	42	43	45	45	45	46		100	1
118	0	0	17	21	23	27	31	35	37	39	40	42	42	44	45	3	100	1
129	0	0	16	20	23	26	31	32	35	36	38	39	40	42	44	5.9	100	1
141	0	0	11	19	23	26 •	29	29	32 =	24	35	• 37	38	40	43	0.2	100	1
152	0	0	0	15	10	24	FI (n	30	32	m	m	g	191	1	9.5	100	1
164	0	0	0	2	. 3	22	24	24	28	29	32	34	3	(<i>J</i> s	9.8	100	1
175	0	0	0	0	4	17	21	22	25	27	30	32	33	34	36	00	100	1
	141	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	1
	152	100	100	100	12	100	1404	100	100	100	100	100	100	100	19	100	100	1
	164	100	100	100	100	O.	hel.	е	100	10	91	Ыζ	м	100	602	19	100	1
	175	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	34,4	1
		141	.3 (13 (2.3	3 1	6.5	4.1 3	3.9	4.7	54.7	60.4	56.1.	70.4	74.5	5.4	75.4	1
		152	111	rh	2	11	1	S	to	n	at	0	Α	re	3	6	714	1
		164	u	3	U	.7 V	V C	10	LC	9	aı		E	ľ	a	(1	1
	- 1	175 (.3. (3 (1.3	6.7 1	2.4	6 2	4.3	2.5	11	46.8	52.4	56.3	60.6	3.5	65.9	1
	- 2	_	141	1	0.95	1	1	1	1	1	0.96	0.94	0.9	0.85	0.84 6	0.85	0.84	į
			152	1	0.95	0.85	1	1 /	۱ir	-/C	0.96	000	0.9	· (Co	0.84	Ä	4	1
			164	1	0.95	0.84	0.8	1 /	۸H	√ Γ	0.9	(E)	2.84	0) (มแ	U	OF C	h
			175	1.	0.94	0.84	0.8	0.8	0.96	0.96	0.89	0.87	0.84	0.82	0.8	1.8	0.8	ī

'Automated Base Engine Calibration In 20min!

Summary

- Engine Calibration Is a Major Bottleneck in Engine Design Process
- VECO Process For SI Engine Removes Base Calibration Bottleneck

VECO Is Practical For Everyday Use Due To Parallel Computing

Questions?