Automating Plant Model Parameterization and Control Optimization

MathWorks Automotive Conference 2016

Javier Gazzarri
Application Engineering
Problem - Design Electric Car

- System level architecture
- Control design and tuning
Problem - Design Electric Car

- System level architecture
- Control design and tuning
Approach

- Modeling and Simulation with Simulink
- The power of MATLAB
 - Parameter estimation
 - Performance optimization
Agenda

- Simple Drivetrain
 - Causal and Acausal modeling
 - Control Design
 - Response Optimization

- Buck Converter
 - Parameter Estimation
Simulink

- Model and simulate dynamic systems
- Signal-based, or causal, modeling
- Need equations
Dynamic System

\[m\ddot{x} = F - b\dot{x}^2 \]
Simscape

- Model and simulate dynamic systems
- Network-based, or *acausal*, modeling
- Intuitive, reusable, less math
- Simscape Language
Response Optimization

\[|\text{sim} - \text{req}|^2 \]

\[\text{model} (a,b,c,d) = \text{requirement} \]
Response Optimization

- Optimization + Simulation
- Fully non-linear plant
- Applicable to any parameter
 - Controller
 - Plant
- Parallelizable
Parameter Estimation

\[\text{model } (a,b,c,d) \rightarrow \text{out} \]

\[\text{in} \rightarrow \text{experiment} \rightarrow \text{out} \]

\[|\text{sim} - \text{exp}|^2 \]

\[\text{iteration} \]
Summary

- Simulink and Simscape
 - Signal- and network-based multi-domain modeling

- The Power of MATLAB
 - Response Optimization
 - Parameter Estimation
Please come by our booth!
Thank You
Simulink

\[m \ddot{x} = F - b \dot{x}^2 \]