Diagnostics and Prognostics with MATLAB

Seth DeLand
Agenda

- Introduction to Prognostics and Diagnostics
- Introduction to Machine Learning
- Demo: Using machine learning to predict failures
- Demo: Deploying a machine learning pipeline to an embedded device
Terminology - Types of Maintenance

- **Reactive** – Do maintenance once there’s a problem
 - Example: replace car battery when it has a problem
 - Problem: unexpected failures can be expensive and potentially dangerous

- **Scheduled** – Do maintenance at a regular rate
 - Example: change car’s oil every 5,000 miles
 - Problem: unnecessary maintenance can be wasteful; may not eliminate all failures

- **Predictive** – Forecast when problems will arise
 - Example: text message from your vehicle that warns that fuel pump is about to die
 - Problem: difficult to make accurate forecasts; requires complex algorithms
Why perform prognostics and diagnostics?

- Example: faulty braking system leads to windmill disaster
 - https://youtu.be/-YJuFyjTM0s?t=39s
Why perform prognostics and diagnostics?

- Example: faulty braking system leads to windmill disaster
 - https://youtu.be/-YJuFvjtM0s?t=39s
- Wind turbines cost millions of dollars
- Failures can be dangerous
- Maintenance also very expensive and dangerous
In the Automotive Industry

- **Heavy Equipment/Commercial Vehicles**
 - Many working on for several years
 - Meeting service agreements
 - Additional services to sell to customers

- **Passenger Vehicles**
 - Early programs already to market
 - Lot’s of buzz in the news
Techniques for Diagnostics and Prognostics

- Stochastic time-series modeling
 - AR (auto-regressive), ARMA (auto-regressive moving average), regression splines, Volterra series expansion

- Estimation and Controls
 - Kalman filters, extended Kalman filters, state-space models, transfer function models

- Machine Learning
 - Neural networks, nearest neighbors, decision trees

Focus of today’s talk.
Machine Learning

Machine learning uses **data** and produces a **program** to perform a **task**

Task: Human Activity Detection

Standard Approach

- **Hand Written Program**
 - If $X_{\text{acc}} > 0.5$
 - then “SITTING”
 - If $Y_{\text{acc}} < 4$ and $Z_{\text{acc}} > 5$
 - then “STANDING”
 - ...

- **Formula or Equation**
 \[
 Y_{\text{activity}} = \beta_1 X_{\text{acc}} + \beta_2 Y_{\text{acc}} + \beta_3 Z_{\text{acc}} + \ldots
 \]

Machine Learning Approach

- **Model:** Inputs \rightarrow Outputs

\[
\text{model} = \langle \text{Machine Learning Algorithm} \rangle (\text{sensor_data, activity})
\]
Different Types of Learning

Machine Learning

Supervised Learning
- Develop predictive model based on both input and output data
- Classification
 - Classify if “ok” or “needs maintenance”
 - Classify driver “style”
- Regression
 - Predict time until failure

Unsupervised Learning
- Discover an internal representation from input data only
- Clustering
 - Find outliers in sensor data
 - Find clusters of operating ranges

Categories of Algorithms
Different Types of Learning

- **Supervised Learning**
 - Develop predictive model based on both input and output data
 - **Classification**
 - Support Vector Machines
 - Discriminant Analysis
 - **Regression**
 - Linear Regression
 - GLM
 - SVR, GPR
 - Ensemble Methods
 - Decision Trees
 - Neural Networks

- **Unsupervised Learning**
 - Discover an internal representation from input data only
 - **Clustering**
 - kMeans, kmedoids
 - Fuzzy C-Means
 - Hierarchical
 - Gaussian Mixture
 - Neural Networks
 - Hidden Markov Model

Machine Learning

Categories of Algorithms
Different Model Structures

Decision Tree

- \(X_1 < 4 \)
 - yes
 - \(X_2 > 9 \)
 - yes
 - Dog
 - no
 - no
 - \(X_2 > 1 \)
 - yes
 - Cat
 - no
 - Cat

Support Vector Machine

- \(y = mx + b \)
 - Points on the graph
 - \(O \)
 - \(\circ \)
“essentially, all models are wrong, but some are useful”
– George Box
Example: Classification

Type of Learning

- **Supervised Learning**
 - Develop predictive model based on both input and output data

- **Unsupervised Learning**
 - Discover an internal representation from input data only

Categories of Algorithms

- Classification
- Regression
- Clustering

Objective:
Train a classifier to predict how close to failure a component is.

Data:

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Engine Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td>Time to maintenance: urgent, short, medium, long</td>
</tr>
</tbody>
</table>
Case Study: Predictive Maintenance of Turbofan Engine

Sensor data from 100 engines of the same model

Scenario: Have failure data
- Performing scheduled maintenance
- Failures still occurring (maybe by design)
- Search records for when failures occurred and gather data preceding the failure events
- Can we predict how long until failures will occur?

Data provided by NASA PCoE
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
MATLAB: A Suite for Machine Learning

<table>
<thead>
<tr>
<th>Steps</th>
<th>Challenge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessing, exploring and analyzing data</td>
<td>Data diversity</td>
</tr>
<tr>
<td>Preprocess data</td>
<td>Lack of domain tools</td>
</tr>
<tr>
<td>Train models</td>
<td>Time consuming</td>
</tr>
<tr>
<td>Assess model performance</td>
<td>Avoid pitfalls</td>
</tr>
<tr>
<td></td>
<td>Over Fitting, Speed-Accuracy-Complexity</td>
</tr>
<tr>
<td>Iterate</td>
<td></td>
</tr>
</tbody>
</table>
Machine Learning Workflow

Train: Iterate till you find the best model

Predict: Integrate trained models into applications
Integrate analytics with your enterprise systems

MATLAB Compiler and MATLAB Coder
Case Study: Human Activity Learning Using Mobile Phone Data

Data:
- 3-axial Accelerometer data
- 3-axial Gyroscope data
Learn More

- **Webinars:**
 - Predictive Maintenance with MATLAB: A Prognostics Case Study
 - Signal Processing and Machine Learning for Sensor Data Analytics

- **Web Pages:**
 - Machine Learning
 - Statistics and Machine Learning Toolbox
 - Neural Networks Toolbox
 - System Identification Toolbox
Key Takeaways

- MATLAB provides a wide variety of Machine Learning tools that are easy to get started with

- Deploy Prognostics and Diagnostics algorithms to where it makes sense, whether it’s on the vehicle or in IT infrastructure

- Work with us and we can help you get started applying these techniques