Electrified Powertrain Design Exploration

MathWorks Automotive Conference

May 2nd, 2018

Kevin Oshiro
MathWorks
Presenter

- Kevin Oshiro
 - MathWorks Application Engineering

 - Areas of interest:
 - Enabling Model-Based Design using physical modeling
 - Mechatronic systems / electrified powertrains
 - System level control strategies
 - Mentor for EcoCAR3 student competition

 - Previous experience at PACCAR (Kenworth R&D), Motorola

 - Education
 - MSEE, University of Washington
 - BSME, BSEE, Colorado School of Mines
Key Points

- Efficient **plant** modeling enables Model-Based Design (MBD)

- **Powertrain Blockset** provides HEV modeling framework, components, and controls

- Design / optimize **plant and controls** together as a system
Agenda

1. Motivation for modeling HEV’s
2. HEV plant modeling
3. Developing HEV controls
4. HEV design optimization
Agenda

1. Motivation for modeling HEV’s
2. HEV plant modeling
3. Developing HEV controls
4. HEV design optimization
Challenges with HEV Design

- Architecture / topology selection
- Selection and sizing of components
- Complexities in modeling plant and controllers
- How to optimize performance over wide range of conditions?
- Control algorithms real-time implementable
Challenges with HEV Design – Example

- **Parallel / Series-Parallel HEV Architecture**
 - **P#** = Electric machine locations
 - Multiple combinations (i.e. P2, P1/P4, etc.)
 - Intrinsic pros/cons for each location
Challenges with HEV Design – Example

- **Parallel / Series-Parallel HEV Architecture**
 - P# = Electric machine locations
 - Multiple combinations (i.e. P2, P1/P4, etc.)
 - Intrinsic pros/cons for each location

![Diagram of Parallel / Series-Parallel HEV Architecture]

- **P2**
 - P2 Clutch
 - P2 Machine
 - Trans + Clutch

- **P1 / P3**
 - Generator
 - Motor
Challenges with HEV Design – Example

- How to optimize performance over wide range of conditions?
 - Reduce energy consumption
 - Driveability requirements
 - Acceleration time
 - Gradeability
 - …
Solution – Model-Based Design (MBD)

- **Sections 2, 3**
 - Evaluate an architecture
 - Assess performance
 - Early closed loop control development

- **Section 4**
 - Optimizing control and plant simultaneously

- **Model reuse** - Code gen / HIL / Verification & Validation
Agenda

1. Motivation for modeling HEV’s
2. HEV plant modeling
3. Developing HEV controls
4. HEV design optimization
Powertrain Blockset Features

Library of blocks

Pre-built reference applications
Powertrain Blockset Benefits

- Accelerate your system development process
 - Open and documented library of component and subsystem models
 - Pre-built vehicle models
 - Industry grade models / architecture
 - Parameterize / customize
 - Fast-running models that are ready for HIL deployment
Use Powertrain Blockset *mapped* engine blocks with your own data.

Create *dynamic* engine models using Powertrain Blockset library components.

Connect in your own CAE model (e.g., GT-POWER).
Powertrain Blockset – P2 Reference Application
HEV Modeling Best Practices – Getting Started

- Start with a template or example
 - Review examples in Help for Powertrain Blockset (PTBS) and Simscape Driveline

- For system level simulation, start with a PTBS reference application
 - Model architecture
 - Uses referenced models and variant subsystems for modularity
 - Input / Output layers separate from application layer
 - Utilizes Simulink Projects for model organization

- Parameterize / customize subsystems for your needs
HEV Modeling Best Practices – New Models

- Use appropriate modeling fidelity for purpose

- Start small, build slowly, use “test harness” models
 - Ensure system is working properly before integrating into larger model
 - Can also use Simulink Test

- Use Simscape if:
 - Already have existing Simscape models
 - Multiple physical domains needed
 - Constructing complex topologies
Key Points

- Efficient plant modeling enables Model-Based Design (MBD)

- Powertrain Blockset provides HEV modeling framework, components, and controls

- Design / optimize plant and controls together as a system
Agenda

1. Motivation for modeling HEV’s
2. HEV plant modeling
3. Developing HEV controls
4. HEV design optimization
Powertrain Control – HEV Supervisory Control

- HEV system level controller included in Reference Applications
- Rule-based
- Simulink / Stateflow
- Real-time implementable
- Customize as needed
Powertrain Control – HEV Supervisory Control

- Major Functions
 - Accel Pedal → Torque
 - Regenerative Brake Blending
 - Battery Management System
 - Power Management
 - Supervisory Control (Stateflow)

- Only supervisory control system changes for different HEV architectures
 - Other functions are reusable
Powertrain Control – Charge Sustaining / PHEV Power-Split

- SOC Optimal calculation

\[
SOC_{\text{opt}} = \frac{E_{\text{batt}} \cdot SOC_{\text{opt}} \cdot \eta_{\text{e}} \cdot M_{\text{veh}} \cdot v_{\text{veh}}}{E_{\text{batt}}} \quad (2)
\]

- Engine Power Calculation

\[
P_{\text{ICE, dem}} = P_{\text{dem, trac}} + k_2 (SOC_{\text{opt}} - SOC_{\text{act}}) \quad (3)
\]

- Minimum Eng On Power

\[P_{\text{eng}} = k_1 \text{ [kW]}\]
Engine Control – HEV Mode

- Optimization algorithm used to find minimum BSFC line

- Results placed in lookup tables

- For an engine power command
 - Stationary mode can operate directly on this line
 - PHEV mode will attempt to operate on this line

- Good example of combining optimization w/ rules
Powertrain Control – Power Management

- Bound battery power within dynamic power limits of battery
- Convert mechanical power request to electrical power using efficiency map
- Check if electric power request is within limits
 - OK → allow original mechanical power request
 - Not OK → use limit for electrical power, and convert to an allowable mechanical power request
Starting the ICE in a P2 HEV: EV → Parallel

- “Bump” start
 - Can cause driveline disturbance

- “Shuffle” clutches
 - Process takes ~400-500 ms, causes vehicle speed to decrease

- Use low voltage Starter (or P0 machine)
 - Implemented in P2 Reference Application
 - 12V starter cranks ICE → ICE speed match mode → close P2 clutch
Assessing Performance

- Minimal vehicle speed tracking error
- Actuator torques not noisy
- Power doesn’t exceed limits for long periods
- SOC trends toward target
- Improved MPG over conventional vehicle
Key Points

- Efficient plant modeling enables Model-Based Design (MBD)

- **Powertrain Blockset** provides HEV modeling framework, components, and controls

- Design / optimize plant and controls together as a system
Agenda

1. Motivation for modeling HEV’s
2. HEV plant modeling
3. Developing HEV controls
4. HEV design optimization
Optimization Introduction

- Objective function – What you are trying to achieve?
 - Minimize measured signal

- Design variables – What parameters need to be adjusted?
 - Physical model parameters
 - Controller gains

- Constraints – What are the bounds or constraints of the design variables?
 - Min/Max values
 - Parameter dependencies

Minimizing (or maximizing) objective function(s) subject to a set of constraints

Objective Function

$$\min_{x} f(x)$$

Linear or nonlinear

Design variables (discrete or integer)

Linear constraints

$$Ax \leq b$$

$$A_{eq} x = b_{eq}$$

$$l \leq x \leq u$$

Nonlinear constraints

$$c(x) \leq 0$$

$$c_{eq}(x) = 0$$
MathWorks Optimization Tools

- **Optimization Toolbox**
 - MATLAB

- **Global Optimization Toolbox**
 - MATLAB

- **Simulink Design Optimization (SDO)**
 - **User Interface**
 - Uses functions from toolboxes above

Different starting points give different optima!
HEV Design Optimization Examples

- Example 1
 - Simultaneous control and hardware parameter optimization

- Example 2
 - Find single set of control parameters that work for different driving conditions
HEV Design Optimization Examples

- **Example 1**
 - Simultaneous control and hardware parameter optimization

- **Example 2**
 - Find single set of control parameters that work for different driving conditions
Multi-Mode HEV Review

Development of a New Two-Motor Plug-In Hybrid System

Naritomo Higuchi, Yoshhiro Sunaga, Masashi Tanaka and Hiroo Shimada
Honda R&D Co., Ltd.

Battery
Mot
Gen
Clutch

Front Tires

Requested Tractive Force [N]

Vehicle Speed [kph]

0 1000 2000 3000 4000 5000 6000 7000 8000

0 20 40 60 80 100 120 140 160

EV Mode
Multi-Mode HEV Review

Development of a New Two-Motor Plug-In Hybrid System

Naritomo Higuchi, Yoshihiro Sunaga, Masashi Tanaka and Hiroo Shimada
Honda R&D Co., Ltd.

SHEV Mode

Battery

Mot

Gen

Clutch

Front Tires

Requested Tractive Force [N]

Vehicle Speed [kph]

EV

SHEV

Engine / Power Split

MathWorks
Multi-Mode HEV Review

Development of a New Two-Motor Plug-In Hybrid System

Naritomo Higuchi, Yoshihiro Sunaga, Masashi Tanaka, and Hiroo Shimada
Honda R&D Co., Ltd.

Engine Mode
Design Optimization Problem Statement

- Maximize MPGe
 - FTP75 and HWFET
 - Weighted MPGe = 0.55(FTP75) + 0.45(HWFET)

- Optimize Parameters:
 - 5 control parameters
 - EV, SHEV, Engine mode boundaries
 - 1 hardware parameter
 - Final differential ratio

- Use PC
 - Simulink Design Optimization (SDO)
 - Parallel Computing Toolbox (PCT)
Simulink Design Optimization

- Speed Up Best practices
 - Accelerator mode
 - Fast Restart
 - Use Parallel Computing Toolbox
- Specify Simulation timeout
Optimization Results

Simulink Design Optimization \rightarrow Response Optimization

$F_d = \frac{\beta}{(\gamma + \psi)} + \alpha$

3.42:1

+ 2% MPGe

~ 12 Hours

2.92:1
HEV Design Optimization Examples

- Example 1
 - Simultaneous control and hardware parameter optimization

- Example 2
 - Find single set of control parameters that work for different driving conditions
Powertrain Control – Charge Sustaining / PHEV Power-Split

- SOC Optimal calculation

\[\text{SOC}_{\text{opt}} = \frac{E_{\text{batt}} \text{SOC}_{\text{opt}} \eta_{\text{rec}} M_{\text{veh}} v_{\text{veh}}^2}{E_{\text{batt}}} \] \((2) \)

- Engine Power Calculation

\[P_{\text{ICE,dem}} = P_{\text{dem, trac}} + k_2 (\text{SOC}_{\text{opt}} - \text{SOC}_{\text{act}}) \] \((3) \)

- Minimum Eng On Power

Figure 5. Hybrid operating strategy: parameter \(k_1 \)
Sensitivity Analysis

- Determine sensitivity of fuel economy and ability to charge sustain to changes in design parameters

- Simulink Design Optimization UI
 - Create sample sets
 - Define constraints
 - Run Monte Carlo simulations
 - Speed up using parallel computing
Sensitivity Analysis – Results

- **HWFET**
 - CS Factor highest correlation for charge sustaining
 - Min Engine Power highest correlation for max mpg

- **US06**
 - CS Factor highest correlation for charge sustaining and max mpg

- **FTP72**
 - Min Engine Power highest correlation for maximizing mpg and charge sustaining
Optimization Process – Sensitivity Analysis

- **Sensitivity Analysis**
 - Best numbers in experiment that maximized mpg with minimum delta SOC

<table>
<thead>
<tr>
<th></th>
<th>Charge Sustaining Factor</th>
<th>minimum Engine Power</th>
<th>SOC Factor</th>
<th>mpg</th>
<th>delta SOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWFET</td>
<td>0.1219</td>
<td>19453</td>
<td>16094</td>
<td>40.87</td>
<td>2.56</td>
</tr>
<tr>
<td>US06</td>
<td>0.1656</td>
<td>18047</td>
<td>22656</td>
<td>29.31</td>
<td>0.76</td>
</tr>
<tr>
<td>FTP72</td>
<td>0.2094</td>
<td>11016</td>
<td>17969</td>
<td>33.82</td>
<td>-0.39</td>
</tr>
</tbody>
</table>

- Note the variation in the 3 design variables

- **Next step:**
 - use Response Optimization to attempt to find a *unified* set of parameters to maximize mpg and minimize delta SOC over all 3 drive cycles
Response Optimization

- Find optimal design parameters that satisfy multiple objectives and constraints simultaneously.

Simulink Design Optimization UI
- Define design variables, objective functions, and constraints.
- Use ‘Uncertain Variable’ (Drive Cycle) to run all 3 cycles in 1 iteration.
- Speed up using parallel computing.
Response Optimization – Results

1. View Results
SDO – Response Optimization

- Summary

<table>
<thead>
<tr>
<th>Sensitivity Analysis</th>
<th>Charge Sustaining Factor</th>
<th>minimum Engine Power</th>
<th>SOC Factor</th>
<th>mpg</th>
<th>delta SOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWFET</td>
<td>0.1219</td>
<td>19453</td>
<td>16094</td>
<td>40.87</td>
<td>2.56</td>
</tr>
<tr>
<td>US06</td>
<td>0.1656</td>
<td>18047</td>
<td>22656</td>
<td>29.31</td>
<td>0.76</td>
</tr>
<tr>
<td>FTP72</td>
<td>0.2094</td>
<td>11016</td>
<td>17969</td>
<td>33.82</td>
<td>-0.39</td>
</tr>
</tbody>
</table>

3 Cycle Response Optimization

<table>
<thead>
<tr>
<th>Charge Sustaining Factor</th>
<th>minimum Engine Power</th>
<th>SOC Factor</th>
<th>mpg</th>
<th>delta SOC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWFET</td>
<td>0.2337</td>
<td>11408</td>
<td>17969</td>
<td>41.44</td>
</tr>
<tr>
<td>US06</td>
<td></td>
<td></td>
<td></td>
<td>29.14</td>
</tr>
<tr>
<td>FTP72</td>
<td></td>
<td></td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

- Found single set of design variables to maximize mpg and charge sustain!
Key Points

▪ Efficient plant modeling enables Model-Based Design (MBD)

▪ Powertrain Blockset provides HEV modeling framework, components, and controls

▪ Design / optimize plant and controls together as a system
Key Points

- Efficient plant modeling enables Model-Based Design (MBD)

- Powertrain Blockset provides HEV modeling framework, components, and controls

- Design / optimize plant and controls together as a system
Thank You