Predictive Maintenance with MATLAB and Simulink

Alec Stothert
Development Manager
Design Optimization and Identification
Why Predictive Maintenance?

- Improved operating efficiency
- New revenue streams
- Competitive differentiator
What does a Predictive Maintenance algorithm do?
Helps make maintenance decisions based on large volumes of complex data

Condition Monitoring
Process of monitoring sensor data from machines (vibration, temperature etc.) in order to identify significant changes which can indicate developing faults

Predictive Maintenance
Technique that determines *time-to-failure/remaining useful life (RUL)* from sensor data & historical data in order to predict when maintenance should be performed
Predictive Maintenance Toolbox

- Develop and validate condition monitoring and predictive maintenance algorithms
- Apply signal processing and dynamic modeling techniques to extract features from your data to monitor machine health
- Train machine learning and time-series models to detect, classify, and predict machine failure
Reciprocating Pump Example

- Monitor pump condition and predict future condition
- Measure
 - Flow rate
 - Pressure
 - Engine current
- Faults
 - Leaks
 - Worn bearings
 - Blockages

<table>
<thead>
<tr>
<th>COMMON SPECIFICATIONS</th>
<th>U.S.</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore</td>
<td>0.945"</td>
<td>24 mm</td>
</tr>
<tr>
<td>Stroke</td>
<td>1.18"</td>
<td>30 mm</td>
</tr>
<tr>
<td>Crankcase Capacity</td>
<td>42 oz.</td>
<td>1.26 L</td>
</tr>
<tr>
<td>Shaft Diameter</td>
<td>1.18"</td>
<td>30 mm</td>
</tr>
</tbody>
</table>
Frequency Domain Indicators

- Use spectral peaks and harmonics to understand condition of pump

```matlab
% Remove the mean from the flow and compute the flow spectrum
fA = flow;
fA.Data = fA.Data - mean(fA.Data);
[flowSpectrum,flowFrequencies] = psspectrum(fA,'FrequencyLimits',[2 250]);
```
Classify Faults Based on Condition Indicators

- Train and test a support vector machine

```matlab
% Create and train the classifier
template = templateSVM(...
    'KernelFunction', 'polynomial', ...  
    'PolynomialOrder', 2, ...  
    'KernelScale', 'auto', ...  
    'BoxConstraint', 1, ...  
    'Standardize', true);
combinedClassifier = fitcecoc(...
predictors(cvp.training(1),:), ...
response(cvp.training(1),:), ...  
'Learners', template, ...  
'Coding', 'onevsone', ...  
'ClassNames', [0; 1; 2; 3; 4; 5; 6; 7]);
```
Other Condition Indicators

Extract features using signal-based and model-based methods to determine machine health

Signal-based Methods

Condition Indicator

Model-based Methods
Advanced Condition Indicators

- Capture time-varying dynamics (e.g. vibration data) by computing time-frequency moments

- Detect sudden changes in nonlinear systems using phase-space reconstruction methods (correlation dimension, approximate entropy, Lyapunov exponent)
Tools for Managing and Analyzing Data

- Generate data using Simulink
- Analyze data using datastores
Modeling Faults In Simulink

- Parameterize Blocks

FEMA analysis to choose parameters and failure modes
Datastore to Manage Data

- Ensemble (whole table)
- Member (one row)
- Independent variables
- Data variables
 - Source variables
 - Derived variables
- Condition variables

<table>
<thead>
<tr>
<th>Date</th>
<th>qOut_meas</th>
<th>pMid</th>
<th>qVar</th>
<th>qSkewness</th>
<th>qKurtosis</th>
<th>LeakFault</th>
<th>BlockingFault</th>
<th>BearingFault</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>103.56</td>
<td>9.5309</td>
<td>-0.55515</td>
<td>2.4113</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>17-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>87.039</td>
<td>9.2604</td>
<td>-0.57675</td>
<td>2.4018</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>18-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>117.22</td>
<td>9.3804</td>
<td>-0.54379</td>
<td>2.3226</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>19-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>97.658</td>
<td>9.5407</td>
<td>-0.5533</td>
<td>2.4124</td>
<td>4e-07</td>
<td>0.74</td>
<td>0.0002</td>
</tr>
<tr>
<td>20-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>106.05</td>
<td>9.232</td>
<td>-0.56334</td>
<td>2.403</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>21-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>109.96</td>
<td>9.732</td>
<td>-0.53987</td>
<td>2.3798</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>22-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>105.06</td>
<td>9.4902</td>
<td>-0.56641</td>
<td>2.3461</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>23-Jan-2015</td>
<td>[2001×1 timetable]</td>
<td>105.1</td>
<td>9.2956</td>
<td>-0.56135</td>
<td>2.3623</td>
<td>1e-09</td>
<td>0.8</td>
<td>0</td>
</tr>
</tbody>
</table>

```matlab
ten = simulationEnsembleDatastore('.\Data');
ten.SelectedVariables = [...
    "qOut_meas", "qVar", "qSkewness", "qKurtosis", ...
    "LeakFault"],

data = read(ens)
```

<table>
<thead>
<tr>
<th></th>
<th>qOut_meas</th>
<th>qVar</th>
<th>qSkewness</th>
<th>qKurtosis</th>
<th>LeakFault</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2001×1 timetable</td>
<td>9.5309</td>
<td>-0.5551</td>
<td>2.4113</td>
<td>1.0000e-09</td>
</tr>
</tbody>
</table>
Sensor And Data Access in MATLAB

- Data sources accessible through MATLAB
 - Files (.xls, .cvs, .txt, .mat, etc.)
 - Distributed file systems Azure Blob Storage
 - Amazon S3
 - Industrial Internet of Things
Predict Pump Failures

- Use condition indicators to predict future behavior – remaining useful life (RUL)
Using Fleet Data to Predict Remaining Useful Life

% Build an train the model
mdl = residualSimilarityModel(...
 'Method', 'poly2',...
 'Distance', 'absolute',...
 'NumNearestNeighbors', 50,...
 'Standardize', 1);
fit(mdl, trainData);

% Use the model to predict RUL
[estRUL,ciRUL, pdfRUL] = predictRUL(mdl, newData);
RUL Methods and when to use them

Requirement: Need to know what constitutes failure data

- System Data
 - Run-to-failure history
 - Similarity Models
 - Large data
 - Hash Similarity Model
 - Match signal shapes
 - Known degradation dynamics
 - Pairwise Similarity Model
 - Residual Similarity Model
 - Known failure threshold
 - Life time data with or without covariates

Weibull Distribution
MATLAB Coder and Compiler

- Run predictive model on embedded devices
MATLAB Production Server and Enterprise Integration

- Integrate predictive model with your enterprise system and cloud platform
Predictive Maintenance Development - Common pains

- How do I get started with developing algorithms?
 - Reference examples
 - Documentation based on the workflow

- How do I manage data and what if I don’t have any data?
 - Command line functions to manage and label data
 - Examples showing Simulink models generating failure data

- How do I choose condition indicators and estimate the RUL?
 - Functions provided for estimating RUL
 - Functions for computing condition indicators
Predictive Maintenance Toolbox

- Develop and validate condition monitoring and predictive maintenance algorithms
- Apply signal processing and dynamic modeling techniques to extract features from your data to monitor machine health
- Train machine learning and time-series models to detect, classify, and predict machine failure
- Use functionality from Signal Processing, Statistics and Machine Learning and System identification
Thank you!
Predictive Maintenance Toolbox

- Develop and validate condition monitoring and predictive maintenance algorithms
- Apply signal processing and dynamic modeling techniques to extract features from your data to monitor machine health
- Train machine learning and time-series models to detect, classify, and predict machine failure
- Use functionality from Signal Processing, Statistics and Machine Learning and System identification