Developing Active Safety Systems Using MATLAB and Simulink

MathWorks
AUTOMOTIVE CONFERENCE 2015

Marco Roggero
Senior Application Engineer
marco.roggero@mathworks.de
Introduction & Motivation

- Active Safety Systems must operate consistent and robust also in unpredictable environments

- Testing these systems in a real world environment is dangerous and can cause serious damage

- Examples:
 - Lane Keeping Systems
 - Adaptive Cruise Control Systems
 - Automated Emergency Braking
Develop and verify your active safety system functionality and improve robustness using system level simulation.
What is Active Safety?

- Safety systems that are active *prior* to an accident
 - Use an understanding of the state of the vehicle and its environment to avoid and minimize the effects of a crash.
 - Interpret signals from various sensors and decide how to help the driver to control the vehicle.
Case Study: Lane Keeping System

- Detect the vehicle's departure from its lane
- Warn the driver or actively steer the vehicle
Developing Active Safety Systems

A Multi-Domain Problem
Developing Active Safety Systems
The Challenge: Closed Loop with Environment
Developing Active Safety Systems
Developing the Vision Algorithm Part

- MATLAB based workflow provides
 - Easy to debug scripting environment
 - Pixel level, 2D, 3D visualization
 - Easy-to-use powerful image processing, and computer vision algorithms
Developing Active Safety Systems

Developing the Vision Algorithm Part

- MATLAB based workflow provides
 - Easy to debug scripting environment
 - Pixel level, 2D, 3D visualization
 - Easy-to-use powerful image processing, computer vision algorithms
Developing Active Safety Systems

Developing the Controller Part

- **Goal**
 - Keep the vehicle within a lane by controlling steering input

- **Controller configuration**
 - Mode Selector (Stateflow)
 - Risk Assessment (Stateflow)
 - Steering angle compensator (Simulink)
 - Feed-back steer angle using heading & lateral offset
 - Feed-forward steer angle using curvature & vehicle speed

- **Control Parameter Tuning**
Developing Active Safety Systems

Developing the Controller Part

- Determining Control Mode – creating the model

System Off

Engine On No System Fail Engine Off || System Fail

System Ready

SystemSW == On System SW== Off

System On

Lane Departure Warning

Lane Keeping System

VehicleSpeed
LaneValidity

Not Active
Active

DriverSelection == LKS
Developing Active Safety Systems

Developing the Controller Part

- Determining Control Mode – creating the model
Developing Active Safety Systems

System Level Simulation

- Closed-loop test harness model for system level validation
Developing Active Safety Systems
System Level Simulation
Need for Sensor Fusion
Case study: Automated Emergency Braking

Accurate CIPV (Critical In-Path Vehicle) selection
Example: Radar and Camera Data Fusion
Developing Active Safety Systems Using MATLAB and Simulink

Marco Roggero
Senior Application Engineer
marco.roggero@mathworks.de

AUTOMOTIVE CONFERENCE 2015