Live Debugging of Stateflow Charts While Running on ECU

Amjad Elshenawy & Mohammad Raouf

Mathworks Automotive Conference 2015
Stuttgart, Sep., 24th 2015
Table of contents

1. Testing & Debugging Techniques in MBD
2. Focus on « Simulink External Mode »
3. Valeo Solution in Details
4. Conclusion
1. Testing & Debugging Techniques in MBD
2. Focus on « Simulink External Mode »
3. Valeo Solution in Details
4. Conclusion
Testing in Model Based Design

- What happens if a test case fails?
- How to debug in X-In-the-Loop testing?
- How to debug on Vehicle?
Debugging in Model-In-the-Loop (MIL) Testing

Simulink Blocks
- Signal Analysis
 - Scopes and Signal Viewers
 - Signal Logging
 - etc ...

Stateflow Charts
- Stateflow Chart Animation
- Stateflow Breakpoints and Watch Data
Debugging in Software-In-the-Loop (SIL) & Processor-In-the-Loop (PIL) Testing

Simulink Blocks
- Signal Analysis
 - Scopes and Signal Viewers
 - Signal Logging
 - etc …

Stateflow Charts
- Stateflow Chart Animation in “External Mode”
 - Chart local data can be viewed on signal viewers by designating them to be test points

Some Limitations Exist for internal Signal Logging
Debugging in Hardware-In-the-Loop (HIL) & On Vehicle Testing

- **Design phase**
 - Identify debugging variables
 - Declare debugging variables as “Global Variables” (they will have Fixed Memory Address)

- **Validation phase**

![Diagram showing CAN Communication between Test Tool and ECU with layers: Generated Code from Model, Debug Monitor, xCP / CCP Driver, CAN Driver]
Debugging in Hardware-In-the-Loop (HIL) & On Vehicle Testing

Simulink Blocks

- Data acquisition and signal plotting
- Parameter tuning

![Simulink Blocks Diagram](image)
Manually create a debugging variable representing chart states
Stateflow Charts – The Classical Way

- Visualize the value of the state variable using the test tool
- Run the test case and monitor the state variable

<table>
<thead>
<tr>
<th>Name</th>
<th>Acq</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil stActrTstBB1</td>
<td>✔️</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oil bActrTstlnProgsBB1</td>
<td>✔️</td>
<td>-</td>
<td>bool</td>
</tr>
<tr>
<td>Oil bBlowBy1ReqActrTst</td>
<td>✔️</td>
<td>-</td>
<td>bool</td>
</tr>
</tbody>
</table>
Debugging in Hardware-In-the-Loop (HIL) & On Vehicle Testing

Stateflow Charts – The Classical Way

- Drawbacks of the Classical Way of Debugging Stateflow Charts
 - Manually Define State Variables
 - Extra development effort is required
 - Additional memory consumption
 - Poor Visualization of Statecharts; No Statechart Animation
- Isn’t there a better way to debug Stateflow charts running on ECU?
 - Valeo solution with visualization and animation of Stateflow models based on “Simulink External Mode” will be presented
1. Testing & Debugging Techniques in MBD
2. Focus on « Simulink External Mode »
3. Valeo Solution in Details
4. Conclusion
In “External Mode”, Simulink algorithm is executed outside Simulink environment. Simulink is merely a GUI for:

- Visualizing Data
- Acquiring Signals
- Tuning Parameters (Provided that parameters are not inlined)
Configure Code Generation in External Mode

- In the model «Code Generation» configuration, configure:
 - « System target file » as « ert.tlc »
 - « Interface » as « External Mode »
 - « Transport Layer » as « tcpip » or « RS-232 (serial) »
Steps to start External Mode communication

1. Build the Target Executable
 - Both code and external executable are generated

2. Run the External Executable

3. Select Simulink simulation as “External” Mode

4. Connect to the Target

5. Start Simulation in External Mode
External Mode Remarks

- External mode uses “Code Instrumentation”
 - Includes extra header files
 - Adds code for data exchange and for transport layer
 - Adds extra variables

- ERT supports only two transport layers, namely, TCP/IP and RS-232 (serial). **No direct support for automotive communication protocols.**
1. Testing & Debugging Techniques in MBD
2. Focus on « Simulink External Mode »
3. Valeo Solution in Details
4. Conclusion
Valeo Solution in Details

To prepare environment, 3 steps are needed
Use Embedded Coder (ert.tlc) to generate a Global structure “DW_<modelName>”, containing active state of each state machine.

```c
typedef struct {
    ...
    uint8_T is_StateChart_1; /* ... */
    uint8_T is_StateChart_2; /* ... */
    uint8_T is_StateChart_3; /* ... */
    uint8_T is_StateChart_4; /* ... */
    ...
} DW_<modelName>;
```

No need for code instrumentation on Target!
1st Step: Exchanging Model States Info from ECU to PC

- Add XCP/CCP and CAN drivers on laptop
- Configure reception of data in Valeo Tool
2nd Step: Exchange Received States Info to Simulink Model

- Modify generated External-Mode files:
2nd Step: Exchange Received States Info to Simulink Model

- Modifications in details:
 - Comments all direct assignation to the states values
 - Generates additional C files that directly update the states value with the values received from ECU

```c
/* Entry: ActrTstBlowBy/F02_BlowBy2Tst/F01_BlowBy2TstChart */
/* ValeoTool Comment: ActrTstBlowBy_AUTOCODE_DWork.is_active_c1_ActrTstBlowBy_AUTO = 1U; */

/* Entry Internal: ActrTstBlowBy/F02_BlowBy2Tst/F01_BlowBy2TstChart */
/* Transition: '<<S8>:10' */
/* ValeoTool Comment: ActrTstBlowBy_AUTOCODE_DWork.is_c1_ActrTstBlowBy_AUTO_I_OIL_ACTRTEST_BB2_IDLE; */

/* Entry 'OIL_ACTRTEST_BB2_IDLE': '<<S8>:1' */
Oil_stActrTstBB2 = OIL_ACTRTEST_BB2_IDLE;
```
3rd Step: Final Setup

- Generate executable “Simulink-to-ECU Communication”:
Then, launch Stateflow Debugging Activity

Request to start Comm.

Requests to start External Mode Communication

Starts EXE

Initiates Communication

Requests States Value

Sends States Value

Requests States Value

Sends States Value

Request to stop Comm.

Kill EXE

Exchanges value for animation

Exchanges value for animation
1. Testing & Debugging Techniques in MBD
2. Focus on « Simulink External Mode »
3. Valeo Solution in Details
4. Conclusion
Conclusion

- Using “Simulink External Mode”, and with our in-house tool, we were able to read Statechart information in real-time from the ECU and accordingly animate Stateflow charts on PC.

- This technique facilitates a lot debugging of Statecharts for on-vehicle tests.

- Next step is to support FlexRay and LIN communication protocols.