Modeling a powertrain in Simscape in a modular vehicle component model library

Stuttgart, 24.09.2015, MBtech, Jörn Bader
Contents

- Introduction – initial situation
 - Driving performance and consumption simulation - Overview
 - Initial powertrain in Simulink

- Switch to a powertrain in Simscape
 - Motivation
 - Short example

- Results and Conclusion
 - Powertrain in Simscape
 - Simulation results and further work
Introduction – initial situation

Driving performance and consumption simulation - Overview
Model structure and additional details

- **Model structure:**
 - Simulation of powertrain concepts
 - Focus on powertrain losses
 - No monitoring of powertrain vibrations
 - Longitudinal dynamics (one wheel)

- **Additional details:**
 - ~ 1000 Subsystems with ~ 1000 parameters
 - < 1 minute for a NEDC simulation
 - > 100 users in several departments with different requirements
Typical results

- Consumption values in l/100km
- Driving performance (e.g. acceleration 0 – 100 kph in seconds)
- Torque flow over time
- Rotation speed over time
Introduction – initial situation

Initial powertrain in Simulink
Powertrain in Simulink – initial structure (schematic)

- Torque (tq) flow from Engine to Vehicle body
- Rotation speed (n) calculation from Vehicle body back to Engine
- Only one speed calculation in Vehicle body
- Static torque in powertrain
- Dynamic torque calculated at wheel

\[
\dot{\omega} = \frac{tq}{J} \\
\nu_{\text{whl}} = \int \dot{\omega}
\]
Powertrain in Simulink – library structure

- Library structure
- Generic models
- Vehicle data for vehicle fleets
- Automatic configuration for each vehicle
 - Model changes
 - Parameter changes

Diagram:
- EngineLib
 - Engine 1
 - Engine 2
- ClutchLib
 - Clutch 1
 - Clutch 2
 - Clutch 3
- EMLib
 - Electric Motor 1
 - Electric Motor 2

Connections:
- Engine to EngineLib
- Clutch to ClutchLib
- Electric Motor to EMLib

Variables:
- tq
- n
Switch to a powertrain in Simscape

Motivation
Motivation for a switch to Simscape

General difficulties for models in Simulink

- Enhancements get a lot more complicated for complex models
- Modifications are hard to accomplish among several developers

Modeling benefits of Simscape

- Simple component interface
 - Less problems with signal names
 - Easier reuse of components
- Physically correct structured modeling
- Easier understanding for users
- Difficult to understand for users
- Lots of adjustments for consistent signal names
Motivation for a switch to Simscape

Numerical benefits of Simscape

- Calculation of dynamic torque throughout the whole powertrain
- Numerically more stable calculation of dynamic torque
- One system of equations for physical model parts
- Implicit solver
- Local iterations for physical model parts
- Backward calculation possible
Motivation for a switch to Simscape

Dynamic Torque – detailed view

Simulink problems:

- Dynamic Torque calculated through \(tq = J \cdot \dot{\omega} \Rightarrow n = \frac{30}{\pi} \int \dot{\omega} \)
- Calculation in every component requires at least 7 integrators
- Calculation explicit / fixed step \(\rightarrow \) high errors or small step size needed

Simscape:

- Implicit solver for stiff parts of the model \(\rightarrow \) More stable calculation of dynamic torque
- Local iterations to minimize simulation errors
Switch to a powertrain in Simscape

Short example
Transformation example – model of a differential

Equations:

\[n_{Dflln} = i_{Dfll} \cdot n_{Whl} \]
\[tq_{DfllOut} = (tq_{DfllIn} - tq_{DfllLoss}) \cdot i_{Dfll} \]
Transformation example – model of a differential

```plaintext
component differential

inputs
  i = { 4, '1' }; % Ratio: left
  tqLoss = (0,'N*m'); % tqLoss: left
end

nodes
  I = foundation.mechanical.rotational.rotational; % I: left
  O = foundation.mechanical.rotational.rotational; % O: right
end

parameters
end

variables
  t_in = ( 0, 'N*m' );
  t_out = ( 0, 'N*m' );
end

function setup
  through( t_in, i.t, [] );
  through( t_out, [], O.t );
  % Parameter range checking
  if i == 0
    pm_error('simscape:NotZero','Gear ratio')
  end
end

equations
  t_out == i * (t_in - tqLoss);
  I.w == i * O.w;
end
```

Equations

Simscape
Results and Conclusion
Powertrain in Simscape
Powertrain in Simscape (schematic)

- Physical model parts in Simscape
- One physical network
- Engines as torque sources
- Torque losses calculated in Simulink
- Control parts in Simulink
Powertrain in Simscape – library structure

- Library structure
- Generic models
- Vehicle data for vehicle fleets
- Automatic configuration for each vehicle
 - Model changes
 - Parameter changes
Results and Conclusion

Simulation results and further work
Correct calculation of dynamic torque

- Vehicle acceleration
- Torque at gearbox output
- Total torque in Simscape including dynamic torque
Results achieved with Simscape

Improved model structure and streamlined modeling process

- Physically more correct powertrain model ✔
- Simple component interface
 - Less problems with signal names ✔
 - Easier reuse of components ✔

Improved accuracy and numerical stability

- Calculation of dynamic torque throughout the whole powertrain ✔
- Numerically more stable calculation of dynamic torque ✔
Conclusion and further work

- Further redesign of the existing model library in Simscape
- Building of new models in Simscape
- Rollout of the Simscape library for all active users
- Backward calculations in Simscape
Thank you