How can you use MATLAB and Simulink to develop automated driving algorithms?

- Perception
- Control
- Planning
Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

- Perception
- Control
- Planning

Deep learning
Sensor models & model predictive control
Sensor fusion with live data
Path planning
How can you use MATLAB and Simulink to develop perception algorithms?

- Deep learning
- Sensor fusion with live data
- Sensor models & model predictive control
- Perception
- Control
- Path planning
Automated Driving System Toolbox introduced: Ground Truth Labeling App to label video data
Automate labeling lanes with Ground Truth Labeler

Run automation algorithm
Specify attributes and sublabels in Ground Truth Labeler App
Automate labeling pixels with Ground Truth Labeler
Learn how to train a deep learning network using this example

- **Train free space detection network using deep learning**

 Computer Vision System Toolbox™
Load and plot training images

% Create datastore for images
imds = imageDatastore(imgDir);
I = readimage(imds, 1);
I = histeq(I);
imshow(I)
% Load pixel labels
classes = ["Sky"; "Building"; ...
 "Pole"; "Road"; "Pavement"; "Tree"; ...
 "SignSymbol"; "Fence"; "Car"; ...
 "Pedestrian"; "Bicyclist"];
pxds = pixelLabelDatastore(...
 labelDir,classes,labelIDs);

% Display labeled image
C = readimage(pxds, 1);
cmap = camvidColorMap;
B = labeloverlay(I,C,'ColorMap',cmap);
imshow(B)
Visualize distribution of labeled pixels

% Visualize label count by class
tbl = countEachLabel(pxls)

frequency = tbl.PixelCount / ...
 sum(tbl.PixelCount);

bar(1:numel(classes),frequency)
xticks(1:numel(classes))
xticklabels(tbl.Name)
xтикangle(45)
ylabel('Frequency')
Create and visualize baseline network

% Create SegNet architecture
lgraph = segnetLayers(...
 imageSize, numClasses,...
 'vgg16');

% Display network structure
plot(lgraph)
title('Complete Layer Graph')

% Display last layers
plot(lgraph); ylim([0 9.5])
title('Last 9 Layers Graph')
Add weighted layer to compensate for imbalanced data set

```matlab
% Create weighted layer
pxLayer = pixelClassificationLayer(...
    'Name', 'weightedLabels', 'ClassNames', tbl.Name, ...
    'ClassWeights', classWeights)
```
Add weighted layer to compensate for imbalanced data set

```matlab
% Create weighted layer
pxLayer = pixelClassificationLayer(...
    'Name','weightedLabels', 'ClassNames',tbl.Name,...
    'ClassWeights',classWeights)

% Replace layer
lgraph = removeLayers(lgraph, 'pixelLabels');
lgraph = addLayers(lgraph, pxLayer);
lgraph = connectLayers(lgraph,...
    'softmax','weightedLabels');

% Display network structure
plot(lgraph); ylim([0 9.5])
title('Replaced Layers Graph')
```

Replaced network layer
Augment images to expand training set

```matlab
augmenter = imageDataAugmenter(...
    'RandXReflection', true,...
    'RandRotation', [-30 30],... % degrees
    'RandXTranslation',[-10 10],... % pixels
    'RandYTranslation',[-10 10]); % pixels

datasource = pixelLabelImageSource(...
    imdsTrain,... % Image datastore
    pxdsTrain,... % Pixel datastore
    'DataAugmentation',augmenter)
```
Deep learning on CPU, GPU, multi-GPU and clusters

```matlab
options = trainingOptions('sgdm', ...
    'InitialLearnRate', 1e-3, ...
    'MaxEpochs', 100, ...
    'MiniBatchSize', 4, ...
    'Shuffle', 'every-epoch', ...
    'VerboseFrequency', 2,...
    'ExecutionEnvironment', ['auto']);
```

Single CPU: 'auto'
Single GPU: 'auto'
Multiple GPUs: 'multi-gpu'
On-prem server with GPUs: 'parallel'
Cloud GPUs (AWS, Azure, etc.): 'parallel'
Train network and view progress

[net, info] = trainNetwork(datasource, lgraph, options);
Evaluate trained network on image
%
Plot actual results
I = read(imdsTest);
actual = semanticseg(I, net);

B = labeloverlay(I, ...
 actual,...
 'Colormap', cmap,...
 'Transparency',0.4);
imshow(B)
pixelLabelColorbar(cmap, classes);
title('Actual')
Visually compare actual with original labeled results

% Plot expected results
% using original labels
expected = read(pxdsTest);
E = labeloverlay(I,...
 expected,...
 'Colormap', cmap,...
 'Transparency',0.4);
imshow(E)
title('Expected');
Visually compare actual with original labeled results

% Plot differences
imshowpair(...
 uint8(actual),...
 uint8(expected));
title('Difference');
Assess similarity using intersection-over-union (IoU) metric

\[\text{iou} = \text{jaccard}(\text{actual}, \ldots, \text{expected}); \]

\[
\text{table(\text{classes}, \text{iou})}
\]

\[
\text{ans} = \\
11 \times 2 \text{ table} \\
\text{classes} & \text{iou} \\
\hline \\
"Sky" & 0.92659 \\
"Building" & 0.7987 \\
"Pole" & 0.16978 \\
"Road" & 0.95177 \\
"Pavement" & 0.41877 \\
"Tree" & 0.43401 \\
"SignSymbol" & 0.32509 \\
"Fence" & 0.492 \\
"Car" & 0.068756 \\
"Pedestrian" & 0 \\
"Bicyclist" & 0
\]
Evaluate trained network statistics

pxdsResults = ...
 semanticseg(...
 imdsTest, net, ...
 'WriteLocation', tempdir, ...
 'Verbose', false);

metrics = ...
 evaluateSemanticSegmentation(...
 pxdsResults, pxdsTest, ...
 'Verbose', false);

metrics.ClassMetrics

<table>
<thead>
<tr>
<th>Class</th>
<th>Accuracy</th>
<th>IoU</th>
<th>MeanBFScore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky</td>
<td>0.93544</td>
<td>0.89279</td>
<td>0.88239</td>
</tr>
<tr>
<td>Building</td>
<td>0.79978</td>
<td>0.75543</td>
<td>0.59861</td>
</tr>
<tr>
<td>Pole</td>
<td>0.73166</td>
<td>0.18361</td>
<td>0.51426</td>
</tr>
<tr>
<td>Road</td>
<td>0.93644</td>
<td>0.90663</td>
<td>0.7086</td>
</tr>
<tr>
<td>Pavement</td>
<td>0.90624</td>
<td>0.72932</td>
<td>0.70585</td>
</tr>
<tr>
<td>Tree</td>
<td>0.86587</td>
<td>0.73694</td>
<td>0.67997</td>
</tr>
<tr>
<td>SignSymbol</td>
<td>0.76118</td>
<td>0.35339</td>
<td>0.44175</td>
</tr>
<tr>
<td>Fence</td>
<td>0.83258</td>
<td>0.49648</td>
<td>0.50265</td>
</tr>
<tr>
<td>Car</td>
<td>0.90961</td>
<td>0.75263</td>
<td>0.64837</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>0.83751</td>
<td>0.35409</td>
<td>0.46796</td>
</tr>
<tr>
<td>Bicyclist</td>
<td>0.84156</td>
<td>0.5472</td>
<td>0.46933</td>
</tr>
</tbody>
</table>
Distribution of labels in data affects intersection-over-union (IoU)

Distribution of labels in original data set

Evaluation metrics of network

<table>
<thead>
<tr>
<th>Class</th>
<th>Accuracy</th>
<th>IoU</th>
<th>MeanBF Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky</td>
<td>0.93544</td>
<td>0.89279</td>
<td>0.88239</td>
</tr>
<tr>
<td>Building</td>
<td>0.79978</td>
<td>0.75543</td>
<td>0.59861</td>
</tr>
<tr>
<td>Pole</td>
<td>0.73166</td>
<td>0.18361</td>
<td>0.51426</td>
</tr>
<tr>
<td>Road</td>
<td>0.93644</td>
<td>0.90663</td>
<td>0.7086</td>
</tr>
<tr>
<td>Pavement</td>
<td>0.90624</td>
<td>0.72932</td>
<td>0.70585</td>
</tr>
<tr>
<td>Tree</td>
<td>0.86587</td>
<td>0.73694</td>
<td>0.67097</td>
</tr>
<tr>
<td>SignSymbol</td>
<td>0.76118</td>
<td>0.35339</td>
<td>0.44175</td>
</tr>
<tr>
<td>Fence</td>
<td>0.83258</td>
<td>0.49648</td>
<td>0.50265</td>
</tr>
<tr>
<td>Car</td>
<td>0.90961</td>
<td>0.75263</td>
<td>0.64837</td>
</tr>
<tr>
<td>Pedestrian</td>
<td>0.83751</td>
<td>0.35409</td>
<td>0.46796</td>
</tr>
<tr>
<td>Bicyclist</td>
<td>0.84156</td>
<td>0.5472</td>
<td>0.46933</td>
</tr>
</tbody>
</table>

Underrepresented classes such as Pedestrian and Bicyclist are not segmented as well as classes such as Sky and Road.
Generate CUDA Code for Embedded Deployment

% Save network to MAT file
save('SegNet.mat', 'net')

function out = segnet_predict(in) %#codegen
persistent mynet;
if isempty(mynet)
 mynet = coder.loadDeepLearningNetwork('SegNet.mat');
end
out = predict(mynet,in);

% Generate CUDA code
cfg = coder.config('lib');
cfg.TargetLang = 'C++';
codegen -config cfg segnet_predict -args
{ones(360,480,3,'uint8')} -report
Free Space Detection Using Semantic Segmentation
Learn more about developing deep learning perception algorithms with these examples

- **R2017b**
 - **Semantic Segmentation Using Deep Learning**

- **R2018a**
 - **Code Generation for Semantic Segmentation Network**

- **R2018a**
 - **Automate Ground Truth Labeling for Semantic Segmentation**

- **Train free space detection network** using deep learning
 - *Computer Vision System Toolbox™*

- **Generate CUDA® code** to execute directed acyclic graph network on an NVIDIA GPU
 - *GPU Coder™*

- **Add semantic segmentation automation algorithm to Ground Truth Labeler App**
 - *Automated Driving System Toolbox™*
Learn about developing lidar perception algorithms with these examples

- **Read Velodyne files**
 velodyneFileReader
 Automated Driving System Toolbox™

- **Register** point clouds with Normal Distributions Transform
 pcregisterndt
 Computer Vision System Toolbox™

- **Segment** lidar point cloud
 segmentLidarData
 Automated Driving System Toolbox™
How can you use MATLAB and Simulink to develop perception algorithms?

- Control
 - Path planning
 - Sensor models & model predictive control

- Perception
 - Deep learning
 - Sensor fusion with live data

- Planning
Automated Driving System Toolbox introduced:
Multi-object tracker to develop sensor fusion algorithms

- Assigns detections to tracks
- Creates new tracks
- Updates existing tracks
- Removes old tracks
- Predicts and updates state of track
- Supports linear, extended, and unscented Kalman filters

Multi-Object Tracker

Detections → Track Manager → Tracking Filter → Tracks

Videos and Webinars

Introduction to Automated Driving System Toolbox

[Image: Diagram showing the workflow from detections to tracks, with components Track Manager and Tracking Filter, and videos and webinars for further learning.]
Automated Driving System Toolbox introduced examples to:

Develop sensor fusion algorithms with recorded data

- **Design**
 multi-object tracker
 based on logged
 vehicle data

- **Generate C/C++**
 code from algorithm
 which includes a
 multi-object tracker
How can I test my sensor fusion algorithm with live data?
Test forward collision warning algorithm with live data from vehicle
Test forward collision warning algorithm with live data from “surrogate” vehicle
Send and live CAN FD and TCP/IP data

- Video received over TCP/IP
- Detections received over CAN FD
Receive live CAN FD and TCP/IP data
Generate C/C++ code for algorithm
Stream live CAN FD and TCP/IP data into compiled algorithm code

Algorithm uses 1’s of msec in software-in-the-loop mode

Change “interpreted” to “software in the loop” arrow toward end of video
Learn about developing sensor fusion algorithms with live data using this example

- **Stream CAN FD** data to prototype algorithms on your laptop

 Vehicle Network Toolbox™
How can you use MATLAB and Simulink to develop control algorithms?

- **Deep learning**
- **Sensor fusion with live data**
- **Perception**
- **Planning**
- **Control**
 - Sensor models & model predictive control
 - Path planning
Automated Driving System Toolbox introduced examples to:

Synthesize detections to test sensor fusion algorithms

- Synthesize radar detections with probabilistic impairments
- Synthesize vision detections with probabilistic impairments
- Synthesize scenario to test multi-object tracker
Simulate closed loop system with radar/vision detections, sensor fusion, and model-predictive control
Synthesize detections to test sensor fusion and model-predictive controller
How can MPC be applied to lane keeping control?

References
1. For $E_{\text{lateral}} (0)$
2. For $E_{\text{yaw}} (0)$

Measured disturbance
1. Previewed curvature

minimize: $|E_{\text{lateral}}|^2 + |E_{\text{yaw}}|^2$
subject to: $u_{\text{min}} \leq u \leq u_{\text{max}}$

Measured outputs
1. Lateral deviation (E_{lateral})
2. Relative yaw angle (E_{yaw})

Manipulated variable
1. Steering angle (u)

Ego vehicle model

Optimizer

MPC controller

Ego vehicle
Vision Detection Generator models lane detection sensor

Vision Detection Generator

Sensor simulation block used to generate vision detections from simulated actor poses. Detections are generated at intervals of the sensor's update interval. A statistical model generates measurement noise, true detections, and false positives. The random numbers used by the statistical model are controlled by the random number generator settings on the Measurements tab.

Source code

Parameters	Measurements	Actor Profiles	Camera Intrinsics
Sensor Identification
Unique identifier of sensor: 1
Types of detections generated by sensor: Lanes and objects
Required interval between sensor updates (s):
Required interval between lane detection updates (s): Lanes and objects
Sensor Extrinsics
Sensor's (x,y) position (m): [1.9, 0]
Sensor's height (m): 1.1
Yaw angle of sensor mounted on ego vehicle (deg): 0
Pitch angle of sensor mounted on ego vehicle (deg): 1
Roll angle of sensor mounted on ego vehicle (deg): 0
Create highway double curve with drivingScenario

- Driver waypoints simulate distraction at curvature changes
Simulate distracted driver
Simulate lane keep assist at distraction events
Compare distracted and assisted results

- Detect lane departure and maintain lane during distraction
Detect departure based on lateral offset to lane boundary

Max Safe Lateral Distance from Lane Boundary
Simulate lane following by increasing minimum safe distance
Explore lane following results

- Vehicle stays within lane boundaries
Graphically edit scenarios with Driving Scenario Designer
Explore what is required to follow high curvature paths

Follows curvy lanes at slower speed with wider field of view
Learn about synthesizing sensor detections to develop control algorithms with these examples

- Simulate and generate C++ for model-predictive control and sensor fusion algorithms
- Simulate and generate C++ for model-predictive control with lane detections
- Edit roads, cuboid actors, and sensors with Driving Scenario Designer App
 drivingScenarioDesigner
Learn about modeling vehicle dynamics to develop control algorithms with these examples

- **Simulate vehicle dynamics** for closed loop design

 Vehicle Dynamics Blockset™

- **Co-simulate with Unreal Engine** and to set actor positions get camera image

 Vehicle Dynamics Blockset™
How can you use MATLAB and Simulink to develop planning algorithms?

- Deep learning
- Sensor models & model predictive control
- Perception
- Control
- Sensor fusion with live data
- Path planning

Planning
Robotics System Toolbox introduced:
Connectivity with the ROS ecosystem

- Communicate via ROS to integrate with externally authored ROS components
- Communication with Gazebo to visualize and simulated system
- Follow path for differential drive robot with ROS based simulator
We are investing in design and simulation of path planning for automobiles.

Motion planning:
Plan path to next waypoint (RRT*)

Rapidly-exploring Random Tree (RRT*)
Learn about developing path planning algorithms with these examples

- **Plan path** for automobile given pre-defined map
 Automated Driving System Toolbox™

- **Plot map tiles** using World Street Map (Esri)
 Automated Driving System Toolbox™

- **Simulate V2X communication** to assess channel throughput
 LTE System Toolbox™
Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

- Deep learning
- Sensor fusion with live data
- Sensor models & model predictive control
- Path planning

Perception Control Planning
MathWorks can help you customize MATLAB and Simulink for your automated driving application

- **Web based ground truth labeling**
 - Consulting project with Caterpillar
 - [2017 MathWorks Automotive Conference](#)

- **Lidar ground truth labeling**
 - Joint customer presentation
 - 2018 MathWorks Automotive Conference

- **Lidar sensor model for Unreal Engine**
 - Joint paper with Ford
 - SAE Paper 2017-01-0107
How can we help you can use MATLAB and Simulink to develop automated driving algorithms?