Analyzing Fleet Data with MATLAB and Spark

Christoph Stockhammer
What does “Fleet” mean?

- A “Fleet” is any group of things that can generate data and that you would like to look at all together. Examples include:
Automotive Fleet Data

What is the fleet data telling us?

How’s my driving?
How do Customers Apply Analytics to Fleet Data?

Historic data:
- **Batch processing**
- Large data on cluster
- Explore long term trends
- Build model

Streaming data:
- **Near real-time**
- Test and implement model for new data
- Stream processing

Cold Storage

Hot Storage
Analytics Running on Hadoop and Spark (Video)

Browse Directory

<table>
<thead>
<tr>
<th>Permission</th>
<th>Owner</th>
<th>Group</th>
<th>Size</th>
<th>Last Modified</th>
<th>Replication</th>
<th>Block Size</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>6.52 MB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r01_00001_snapshot_0x44.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>7.49 MB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r01_00002_snapshot_0x45.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>7.75 MB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r02_00001_snapshot_0x30.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>7.75 MB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r02_00002_snapshot_0x3f.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>620.55 KB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r02_00003_snapshot_0x65.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>7.76 MB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r03_00001_snapshot_0x3c.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>8.47 MB</td>
<td>10/2/2017 11:45:26 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r03_00002_snapshot_0x45.mat</td>
</tr>
<tr>
<td>-rw-r--r--</td>
<td>wilson</td>
<td>supergroup</td>
<td>1.69 MB</td>
<td>10/2/2017 11:45:27 AM</td>
<td>3</td>
<td>128 MB</td>
<td>array_r03_00003_snapshot_0x65.mat</td>
</tr>
</tbody>
</table>
Major Logistical Barriers to Working with Automotive Fleet Data

- Here is a Hard Drive full of vehicle log data (GB or TB), now what? Oh and by the way, there are a bunch more of these coming soon…
 - Pains
 - Large, non-text data
 - Lack of clarity – “what should I do with this”?
 - Time pressure to get the analysis done

- *My data is in Hadoop, now what?* or *My data is supposed to go into Hadoop, now what?*
 - Pains
 - Giant binary files – not well suited to “drop into” HDFS
 - Fear of loosing control of one’s data – hand data off to “another group”…
 - Fear of a “new system” – Hadoop can be scary, Linux, yikes!
Have you Ever Wondered…?

- How different factors affect how a particular driver drives?

- Real-world vehicle performance of things like: fuel economy, emissions, vehicle dynamics, ride and handling, prognostics, and durability?

- How do you work with terabytes of data to distill out critical information?

- Once you do have the critical information, how to you iterate back through your terabytes of data to extract relevant (time) slices for further study or analysis?
So, what’s the (big) problem?

- Traditional tools and approaches won’t work
 - Accessing the data is hard; processing it is even harder
 - Need to learn new tools and new coding styles
 - Have to rewrite algorithms, often at a lower level of abstraction

- Quality of your results can be impacted
 - e.g., by being forced to work on a subset of your data
 - Learning new tools and rewriting algorithms can hurt productivity

- Time required to conduct analysis
 - Need to leverage parallel computing on desktop and cluster
MathWorks Vehicle Fleet – Case Study

Challenge
▪ Develop and deploy Data Analytics to run on Spark against (non-text format) vehicle fleet data stored on Hadoop

Solution
▪ Use MATLAB tall arrays to develop analytics on the desktop and then scale out to the Hadoop cluster

Results
▪ Developed insight and understanding of over 1300 vehicle trips
▪ Illustrated fuel efficiency performance under real-world driving conditions
Volkswagen Data Lab develops driver recognition algorithms with MATLAB

Develop technology building block for tailoring car features and services to individual
- Need to identify individual drivers based on their driving behavior using collected data

Challenges
- Accuracy despite low training data
- Robustness despite environmental conditions
- Computing time

Data sources
- Logged CAN bus data and travel record

Source: „Connected Car – Fahrererkennung mit MATLAB“
Julia Fumbarev, Volkswagen Data Lab
MATLAB EXPO Germany, June 27, 2017, Munich Germany
Data Analytics Workflow

Access and Explore Data
- Files
- Databases
- Sensors

Preprocess Data
- Working with Messy Data
- Data Reduction/Transformation
- Feature Extraction

Develop Predictive Models
- Model Creation e.g. Machine Learning
- Parameter Optimization
- Model Validation

Integrate Analytics with Systems
- Desktop Apps
- Enterprise Scale Systems
- Embedded Devices and Hardware
What about messy data?

- How do deal with outliers?

- New functions to help you with:
 - Missing Data and Outliers
 - Detecting Change Points
 - Smoothing and Detrending
 - Normalizing and Scaling
 - Grouping and Binning

Full Details: https://www.mathworks.com/help/matlab/preprocessing-data.html
MathWorks Automotive Fleet – Data Collection

- 4G LTE
- Phone
- OBDII
- Bluetooth
- MATLAB Production Server:
 - Enrich data
 - File creation
- Server
- Data Warehouse
- Engineers
The MathWorks Fleet

- 1300 trip log files
- 21 unique vehicles
- Approx 39 unique channels
- Data collected over 1.5 years
Automotive Vehicle Test Fleets – Lots of Data and Lots of Complexity

Vehicles

Trips (files)

Messages

Signals

Time – Value pairs
Access and Explore Data

The Data: Timestamped messages with JSON encoding

```
{
  "vehicles_id": {"$oid":"55a3fd0069702d5b41000000"},
  "time": {"$date":"2015-07-13T18:01:35.000Z"},
  "kc": 1975.0, "kff1225": 100.65293, "kff125a": 110.36619, ...
}
```

```
{
  "vehicles_id": {"$oid":"55a3fe3569702d5c5c000020"},
  "time": {"$date":"2015-07-13T18:01:53.000Z"},
  "kc": 2000.0, "kff1225": 109.65293, "kff125a": 115.36619, ...
}
```

```
{
  "vehicles_id": {"$oid":"55a4193569702d115b000001"},
  "time": {"$date":"2015-07-12T19:04:04.000Z"},
  "kc": 2200.0, "kff1225": 112.65293, "kff125a": 112.36619, ...
}
```
Access a Sample of Data

Raw Data

Timetable

✓ Decode JSON data
✓ Create Timetable
tall arrays \textbf{R2016b}

- What is a tall?
 - Tall is a new data type and a new way of working with Big Data in MATLAB (introduced in R2016b).

- Lots of observations.
 - Tall refers to data types and algorithms for use with \textbf{data that has more rows than will fit into the memory} of a single machine or cluster.

- Looks like a normal MATLAB array
 - Supports numeric types, tables, datetimes, strings, etc…
 - Supports several hundred functions for basic math, stats, indexing, etc.
 - \textbf{Statistics and Machine Learning Toolbox} support (clustering, classification, etc.)
tall arrays R2016b

- Automatically breaks data up into small “chunks” that fit in memory
- Tall arrays scan through the dataset one “chunk” at a time
- Processing code for tall arrays is the same as ordinary arrays
Workflow Pattern

- Access out of memory data
- Work with subsets of your data
- Develop functions for event detection and calculation
- Apply functions to all of your data
- Aggregate, summarize, & visualize

- datastore & tall
- findgroups, splitapply, cellfun
- Normal MATLAB code
- cellfun
- table, histogram, heatmap, boxplot, binScatterPlot
Enterprise Integration
Integrate MATLAB analytics into your technology stack

Data
- Databases
 - Cassandra
 - MongoDB
 - SQL Server
- Cloud Storage
 - Azure Blob
 - Azure SQL
- IoT & Big Data
 - Kafka
 - Azure IoT Hub
 - HORTONWORKS
 - cloudera

Business System
- Visualization
 - Microsoft Power BI
- Web
 - Microsoft IIS
 - Apache Tomcat
 - WebSphere
- Custom App

Platform
- Public Cloud
 - Microsoft Azure
 - Amazon Web Services
 - Rackspace
- Private Cloud
 - OpenStack
 - VMware
Key Takeaways

- Achieve success in Vehicle Fleet Analytics by utilizing new MATLAB data types, specifically tall Arrays for out of memory data sets.

- Leverage timetables and the functions built to work on them to help do the difficult time-series tasks (synchronize and retime).

- Scale your work up with parallel computing toolbox on the desktop or the MATLAB Distributed Computing Server on Hadoop.