Predictive Maintenance using MATLAB:
Pattern Matching for Time Series Data

Dr. Irina Ostapenko (Dr. Türck Ingenieurbüro GmbH),
Jessica Fisch (Daimler AG)

18.04.2018
Collaboration partners

Mercedes-Benz

Jessica Fisch
Mercedes-Benz Werk Mettingen
Digitale Fabrik Powertrain und Projekt Industrie 4.0
PT/TSD
010 – HPC M427
70546 Stuttgart
jessica.fisch@daimler.com

Irina Ostapenko
Senior Data Scientist
Solutions and Algorithms
Kreuzbergstr. 37 Berlin 10965
io@tuerck-optik.de
Collaboration partners

Mercedes-Benz

Jessica Fisch

Focus:
• Digital Transformation
• Big Data
• IIoT

Irina Ostapenko
io@tuerck-optik.de

We provide
• Algorithms
• Signal Processing
• Measurement Systems Developing
Optical System Design
Outline

1. Project introduction
2. Task description
3. Solution/Algorithm
4. Summary
POWERTRAIN

Five modules form the core of our cars
The Powertrain production network is set up globally with lead plant in Germany.
Motivation for Anomaly Detection in the Projekt „iLL“

The goal is to detect anomalies in data

PLC-Data today:

Automatic Notification of the Deviation:

Source: www.autem.de
Data properties in the context of Big Data

The 3 basic V's of Big Data:

- **Velocity**: Speed with which data is generated and analyzed
- **Volume**: Amount of data that traditionally can not be analyzed
- **Variety**: Data diversity refers to unstructured data without a recognizable context

The 2 additional V's:

- **Validity**: Ensuring data quality
- **Value**: measurable benefits from the data
Benefits of „Intelligent Level-Learning“

- Active power engine axis 1
- Position axis 1

Bearing damaged

Machine

Normal cycle
- ✔ Cycletime
- ✔ power
- ✔ Position

Different cycle
- × Cycletime
- × power
- × Position

Error cycle
- × Cycletime
- × power
- × Position

Repair

Ensuring lean production by controlling quality, cost and time

Create maintenance order for unplanned breakdown

Procurement of spare parts; Downtime in production times

Different cycle

Active power engine axis 1
Challenges

- About 700 parameters are continuously monitored in every production cycle yielding 700 individual time-series of about 2500 samples each
Challenges

- About 700 parameters are continuously monitored in every production cycle yielding 700 individual time-series of about 2500 samples each

- Different parameters show very different and elaborate features
Challenges

• About 700 parameters are continuously monitored in every production cycle yielding 700 individual time-series of about 2500 samples each

• Different parameters show very different and elaborate features

Task: Analyse these 700 time-series and find specific kinds of deviations
Requirements for algorithm

Time deviation

Production parameter D

Time, s
Requirements for algorithm

Time deviation

Pattern deviation
Requirements for algorithm

Time deviation might not be critical

Pattern deviation is critical

[Graphs showing time series data for production parameters D and E, with time in seconds and production parameters on the y-axis.]
Requirements for algorithm

What the algorithm should do

• Time series analysis
• Find deviations from normal cycle and
• Distinguishing between time and pattern deviation

What is normal?
Delays in production cycles

- Length of time-series varies from cycle to cycle even for normal production
Delays in production cycles

- Length of time-series varies from cycle to cycle even for normal production
Delays in production cycles

- Length of time-series varies from cycle to cycle even for normal production
Delays in production cycles

- Length of time-series varies from cycle to cycle even for normal production
Delays in production cycles

- Length of time-series varies from cycle to cycle even for normal production
Delays in production cycles

- Length of time-series varies from cycle to cycle even for normal production

Normal cycles can be matched to one another through shifting in time axis!
Algorithm principle
Algorithm principle

- Cycle can be described as sequence of features f1, f2, f3
- Each cycle can show some delays in time t1, t2
Algorithm principle

- Cycle can be described as sequence of features f_1, f_2, f_3
- Each cycle can show some delays in time t_1, t_2
- Automatic feature detection f_1, f_2, f_3
Algorithm principle

- Cycle can be described as sequence of features f_1, f_2, f_3
- Each cycle can show some delays in time t_1, t_2
- Automatic feature detection f_1, f_2, f_3
- Pattern matching through shift of feature along time axis (Δt_1, Δt_2, Δt_3): least square fit (t_{shift}) to minimize the Sum of Residual Squares of two signals
Algorithm principle

- Pattern matching through shift of feature along time axis (Δt_2, Δt_2, Δt_3): minimization of SRS
Algorithm principle

- Pattern matching through shift of feature along time axis (Δt_1, Δt_2, Δt_3): minimization of SRS
- Description of a cycle as feature sequence
- For each feature time and pattern deviation can be calculated
- Time and pattern deviation for each feature are used as characteristic numbers for test cycle

<table>
<thead>
<tr>
<th>f_1</th>
<th>f_2</th>
<th>f_3</th>
<th>Time deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Pattern deviation</td>
</tr>
</tbody>
</table>

Data reduction!
Automatic feature detection

Time series is split

- After a local extremum (maximum or minimum) or on a plateau
- After a given relative change

Data reduction of time series from 2500 datapoints to sequence of max. 60 features (typically 10)!
Algorithm implementation: machine learning approach in MATLAB

Training
- Reference cycles ->
 - Build „reference signal“ for each feature
 - Limits for time and pattern deviation

Testing
- Test cycles ->
 - Comparison of each feature in reference signal
 - Is time and pattern deviation within the limits?
Create „reference signal“ for each production parameter

1. For all training cycles - matching to shortest cycle
2. Create „reference signal“ – mean over all matched reference cycles

![Reference signal](image1.png)

Almost perfect match after shifting

![Cycles from one day](image2.png)
Create „reference signal“ for each produciton parameter

1. For all training cycles - matching to shortest cycle
2. Create „reference signal“ – mean over all matched reference cycles
3. Possible pattern deviation - standard deviation over all matched reference cycles
Create „reference signal“ for each production parameter

1. Create „reference signal“ – mean over all matched reference cycles
2. Possible pattern deviation - standard deviation over all matched reference cycles, limits for SRS
3. Possible time deviation – maximal absolute shift from matched reference cycles
Testing: time and pattern deviation evaluation

![Graph showing normal cycle, error cycle, and delay.]

Reference Signal

Normal Cycle

Error Cycle

Testing
Testing: time and pattern deviation evaluation

Is time and pattern deviation for this feature within the limits?

- Tolerance window (Δt, SRS)
- Easy to spot a critical deviation

![Graph showing reference signal, normal cycle, and error cycle with time and pattern deviation analysis](image-url)
Testing: time and pattern deviation evaluation

reference signal

normal cycle

error cycle

maximum SRS (norm.)

max shift (norm.)

Production parameter F

Time, s

Testing

Predictive Maintenance using MATLAB: Pattern Matching for Time Series Data
Algorithm: Summary

1. Quantitative and qualitative description of production failure
2. Independent of signal form -> universally applicable to other applications or machines
3. Signal description with characteristic numbers, which are easy to interpret
4. Data reduction with a factor 250 without significant loss of information!
5. Easy control of production: recognition of critical errors and non-critical delays online
Example of the added value

Example: Change in code

- Transparency of the process
- Deviation for each Signal
- Reason of Cycletime increase found
- Time and Pattern deviation are recognized
Summary

Algorithm using pattern matching for time series developed and implemented for production data

Why MATLAB?
- easy algorithm implementation
- existing solution for data import
- very good support and broad use in universities

MATLAB Products used:
- Signal Processing Toolbox
- Statistics and Machine Learning Toolbox

Outlook:
- Parallel Computing Toolbox for performance improvement

Prototyp intelligent Level-Learning (iLL) has a new function for anomaly detection
- Troubleshooting in case of failure (maintenance), Parts Planning, Influences on the quality
 ➔ Optimization of repair time, spreaders amount, ...
Thank you for your attention!

Mercedes-Benz

Jessica Fisch
jessica.fisch@daimler.com

Irina Ostapenko
io@tuerck-optik.de

Picture Credits: © Can Stock Photo / AnatolyM, abluocup, maxxyustas