4 megatrends are shaping Automotive market significantly increase of semiconductor content of vehicles

<table>
<thead>
<tr>
<th>ADAS/Autonomous driving</th>
<th>xEV/eMobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>› From ADAS to semi-automated and finally autonomous driving</td>
<td>› Mandated CO₂ reductions make electrification of powertrain inevitable</td>
</tr>
<tr>
<td>› Every world region is striving for "0-accident"</td>
<td>› Advanced connectivity is driven by making the car part of the Internet</td>
</tr>
<tr>
<td>› Increased connectivity and software content increase risk exposure to hackers</td>
<td>› The car will be fully connected (V2I, V2V, in-vehicle)</td>
</tr>
<tr>
<td>› Internal/external connectivity must be secured</td>
<td></td>
</tr>
</tbody>
</table>

Advanced security

Connectivity
Building blocks of automated driving:
Cooperation of multiple system and disciplines is key.

- Data processing and decision making
- Sensing
- Vehicle dynamics and control

Software
- Decision Making
- HMI

Fusion
- Sensor Data
- Central Computing

Connectivity
- DSRC, Wi-Fi Cellular

Vehicle Sensors
- Radar, Ultrasonic, Camera, Laser, GPS, Maps

Sensing
- BMI, Connectivity

Vehicle dynamics and control
- Braking, Suspension, Transmission, Engine

Copyright © Infineon Technologies AG 2018. All rights reserved.
Driver's senses will be replaced by a cocoon of sensors in various technologies
Any next automation level requires more sensors and thus higher level integration → Higher level of simulation/training

<table>
<thead>
<tr>
<th>Application*</th>
<th>Level of automation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Level 2</td>
</tr>
<tr>
<td>Parking assist</td>
<td>Highway & Traffic Jam Assist</td>
</tr>
</tbody>
</table>

Radar # of modules**	≥ 3	≥ 6	≥ 10
Camera # of modules**	≥ 1	≥ 2	≥ 8
Lidar # of modules**	0	≤ 1	≥ 1
Others	Ultrasonic	Ultrasonic	Ultrasonic V2X***

* Source: VDA (German Association of the Automotive Industry), Society of Automotive Engineers
** Market assumption; *** See glossary
360° Radar requires a new type of sensor, bus- and processing-architecture

More radars in the car in area with less space and worse thermal condition
- **Small sensors**
- **Low power consumption**

Sensor fusion needed to get best performance in dense urban situation
- More (raw) data from sensors required in central fusion box → **higher data rates**

More sensors in the car lead to higher wiring effort
- **Cost efficient architecture** and **inexpensive wiring** (un-shielded twisted pair)

Small-form-factor of multiple near-range radar-sensors are the important enablers for autonomous cars
Complextiy is increasing and new methodologies are needed.

Simulate and drive in the computer is the only chance.

Current Utilization Simulink/ Matlab:
- Functional Modelling for HW accelerator IP development
- Model C-code generation -> built as MEX
- Reference for verification + validation
- Radar system simulation (Matlab & MEX)
- Generation of code as Embedded SW

Enhancements expected in the future:
- Radars with more modulations (PMCW, OFDM etc.) besides FMCW
- 64-bit integers
- Fixed-point toolbox is very slow
- FUSI: Matlab generates different code under Simulink and Embedded HW. → FUSI requires
- Parallel execution of system simulation regression, test-cases in different computing unit (GPU, FPGA etc.)
- Scenario Generation
- Ray tracing
- Different target models for complex targets (e.g. set of point targets for car/pedestrian/infrastructure objects)
- Sensor Fusion: multiple sensors on ego-vehicle as well as on multiple vehicles in the environment
Sensor network and V2X data volumes require more computing performance and new domain architecture.

New technologies/sensors
- Lidar, sensor networks
- High-resolution maps
- Car-to-X connectivity

New computing architecture
- GPU architecture
- New SW architecture, e.g. Hypervisor
- Integrated security architecture

New business models
- SOTA updates and new applications
- Big data
- New insurance models
Introduction of central computers triggers demand for high-performance, fail operational microcontrollers (MCUs)

L0 / L1 / L2 vehicles
- Decision making
- Temperature
- Pressure
- Position
- Speed
- Basic car functions
- MCUs, e.g. AURIX™

L3 / L4 / L5 vehicles
- Central computer
- Camera
- Radar
- Lidar
- GPS
- Future ECU = classic ECU + higher performance + fail operational + secure
- Fail operational systems require redundancy in power switches, power supply, sensors, MCUs
- Car security is achieved through discrete security controller (OPTIGA™), integrated security modules in MCUs (AURIX™)
From ECU to domain architecture: Secure µC from Infineon offer the required safety and necessary scalability

Sensor fusion
AURIX™ as main or host controller

Radar & camera
AURIX™ as main* or host controller

Domain control
- AURIX™ as hard-realtime main processor
- Fusion
- Domain
- Gateway

Connectivity gateway
AURIX™ as hard-realtime main controller

Always-on connectivity
AURIX™ as host controller

*for radar
AURIX™ microcontroller complements CPU/GPU to make the central computer robust and fail operational

Examples of central computing platforms

Functionality

1. Data processing for applications (e.g. parking)
2. Fusion of object data, deep learning algorithms
3. Environmental model calculation (road, objects)
4. Trajectory planning
5. Modelling of driver behaviour

AURIX™ as real-time main controller or host controller

- ISO 26262 ASIL-D safety host monitoring operation of the data fusion ECU
- Safe and secure gateway to the vehicle network
- Fallback operation in case of a GPU/CPU fail
- Safe communication to actuator control units

Cooperation is needed to combine automotive world with high performance computing

Pictures: Courtesy of Nvidia, Intel
Infineon addresses a wide range of xEV components – from Main Inverter to Auxiliaries

Key Components of Electric Vehicles

![Diagram showing various components of an electric vehicle]

Categorization of Key Components

<table>
<thead>
<tr>
<th>Category</th>
<th>Component</th>
<th>Power [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Inverter</td>
<td>Main Inverter</td>
<td>30 – 400</td>
</tr>
<tr>
<td>Power Supply</td>
<td>OBC</td>
<td>1.5 – 6.6</td>
</tr>
<tr>
<td>Power Supply</td>
<td>DC-DC</td>
<td>1.5 – 2.5</td>
</tr>
<tr>
<td>Heater</td>
<td>PTC Heater</td>
<td>2 – 5</td>
</tr>
<tr>
<td>Motor Drives</td>
<td>Compressor</td>
<td>1.5 – 5</td>
</tr>
<tr>
<td>Motor Drives</td>
<td>Water Pump</td>
<td>0.2 – 1</td>
</tr>
<tr>
<td>Motor Drives</td>
<td>Oil Pump</td>
<td>0.2 – 1</td>
</tr>
</tbody>
</table>

OBC = On-Board-Charger
A comprehensive product portfolio requires a advanced simulations & design environment for xEV applications

Use Case today and in the future:
- Functional Modelling for HW accelerator IP development (e.g. MEX)
- Model C-code generation
- Reference for verification + validation
- Radar system simulation (Matlab & MEX)
- Generation of code as Embedded SW

Use Case today and in the future:
- Optimization of power converters (specially SMPS) simulation
- Simulation deployment on FPGA based platforms (including Speedgoat and dSpace)
- First proof of concept done with MathWorks' AE support (improvement of factor x3)
- Closed loop simulation for verification control algorithm and power electronics
- First proof on concept with translation of Spice models to MathWorks
- Multi-domain simulation and Analog-Mixed signal simulations
- Hydraulic/Mechanical/Electrical block modeling (e.g. transmissions)
- IDE with workflow that supports FS (ISO26262)
- Automated code generation for uC and Control algorithm analysis

Expectation and Improvements which helps in NEW designs:
- Real-time (or near to real-time) simulation speed
- HDL coder support for physical modeling tools
- Interface between IFXspice (Titan) and MathWorks toolboxes
- Tool for FS analysis (like Medini form ANSYS)
- Multi-core support
The connected car offers many use cases for our customer. Move from closed to open system introduces multiple risks.
Security is not just one more feature in the modern car
Safety and Security are intrinsically linked

A safety or security breach could result in the same consequence:

Threat to life and limb
A single firewall will not be enough! Various security tools have to be added on the way to a secure architecture.

Secure on-board communication

Basic protection of single ECUs (immobilizer & access)

Firewall & gateway

Sandboxing
A single firewall will not be enough! Various security tools have to be added on the way to a secure architecture.

Trust anchors
- Protected execution environments hosting
 - Key storage and related cryptographic operation
 - Security applications

Integrated on MCU
- High speed
- Secure onboard communication
- Logical security

Discrete security controller
- External communication
- Protecting high value
- By certified hardware security

Enabling the root of trust for internal and external communication.
Semiconductors enable the future of driving: More safety, more comfort, less pollution

› Semiconductors enable ~80% of innovation in automotive
› Autonomous driving will increase safety and comfort, but also support CO₂ reduction
› A secure system architecture combined with hardware security will provide the appropriate level of protection
› SIMULATION is key to shorten time to market and reliable system
Part of your life. Part of tomorrow.

infineon