Test Automation and ISO-26262 Preparation for New Bus Product Line with Fully Electrified Powertrain

MathWorks Automotive Conference 2019
Scope
Continental Products used by VDL

› Next generation of public transportation busses
 › Fully electrified powertrain
 › **gVCU** implements high-level driveline controller functions

› Off-The-Shelf HW products
 › **generic Vehicle Control Unit**
 › Body Controller
 › Multiplexer Nodes
 › Instrument Cluster

› Toolchain **Model Based Development System**
 › Based on MATLAB Simulink
 › **MBDS** IDE and modeling framework
 › Compliant to ISO-26262
 › CI/CT support
gVCU - generic Vehicle Control Unit

System Overview

Features

› Central Driveline Controller
 › Torque Control, Brake Control, Cruise Control, …
› High performance µC for complex control algorithms
› HW and basic SW is ASIL-B ready
› Application SW is programmed by the customer using MBDS

8 April 2019
Dr. Sven Semmelrodt, CVAM © Continental AG
MATLAB/Simulink versus MBDS

MBDS

- Single button-click solution
- No MATLAB expert required
MBDS Environment
Composition & Deployment

Specific Extension(s):
- Modular Base Resource Type

Generic Extension:
- MBDS Core, Library and Help

Base Environment:
- MATLAB and Simulink

› Modeling: Simulink and Stateflow
› Code generation: Embedded Coder
› MBDS graphical user interface used as IDE
› Quality assurance measures, ACG, build & download
› Block library for design and integration
› Target HW and customer specific extension, e.g. BSW, compiler, …

100 % model based design
Proven since many years
ISO-26262 Conformance
Tool Evaluation

› Hardware & Basic Software are ASIL-B ready

› MBDS: Evaluation of a software tool by analysis (ISO-26262, Part 8, Chapter 11.4.5)
MBDS Test Automation
3-Pillars of the Test Approach

› Configuration, execution & evaluation: **Test Suite view in the MBDS IDE**
› Implementation of test stimuli & expected values: **Signal Definition Table**
› Test frame: **MBDS Model Template**
Test Implementation, Execution & Evaluation

- Load test data
- Test Data (*.xlsx)
- Log stimuli, expected values & output signals
- Test Outputs (*.mat)
- Evaluate outputs

Test Management

Test Configuration

- Test Suite (*.xml)
- Test Data Management
- One or multiple test levels
- One or multiple test cases
- With or without model coverage
- Manual inspection using Simulation Data Inspector
- Stimuli, expected values, outputs and configuration can be archived
MBDS Test Automation
Test Implementation using Signal Definition Table

› Test data editor for Stimuli & Expected Values: **MS Excel**
 › Our customers are MS Excel but no MATLAB experts
› Each test case is specified by a separate sheet in the SDT
 › Using defaults, a test case may contain signal subsets only
 › Simple test data specification using transition based time/value pairs
› Evaluation parameters (Shift & Tolerance) per expected value
› Test case & test step description
› Requirements for traceability
› Implementation of SDT by Signal Builder blocks (Q&D debugging)
› SDT can be automatically derived from existing models
MBDS Test Automation
Automated Test Evaluation & Test Report

› Test report is generated based on the test levels & test cases selected for a test session
› Logged test outputs are compared to the expected values (considering Tolerance & Shift)
› Test information overview with test result summary
› Test description & requirements
› Signal test results & deviation statistics are displayed
› Test results are tagged in HTML report for simple CT result extraction jobs
› Fully automated via API
MBDS Test Automation
Automated Test Evaluation & Test Report

› Test report is generated based on the test levels & test cases selected for a test session
› Logged test outputs are compared to the expected values (considering Tolerance & Shift)
› Test information overview with test result summary
› Test description & requirements
› Signal test results & deviation statistics are displayed
› Test results are tagged in HTML report for simple CT result extraction jobs
› Fully automated via API
› Signal plots for fast visual inspection
Test report is generated based on the test levels & test cases selected for a test session

Logged test outputs are compared to the expected values (considering Tolerance & Shift)

Test information overview with test result summary

Test description & requirements

Signal test results & deviation statistics are displayed

Test results are tagged in HTML report for simple CT result extraction jobs

Fully automated via API

Signal plots for fast visual inspection

Requirements to test results matrix
Continuous Integration / Continuous Testing

Why?

› Continuous Integration & Testing
 › Improvement of the SW quality by continuously integration of the SW (agile development process)
 › Automated Activities
 › Static model analysis using automated model rule checks
 › Calculate model metrics (e.g. subsystem depth, cyclomatic complexity, …)
 › Automatically execute test sessions and summarize test results
 › Determine model test coverage
 › Automatically generate code, model documentation & run the build process
 › Running above listed activities of a complex SW project is a time consuming activity
 › A fully automated ‘nightly’ build & test feature is required
Continuous Integration / Continuous Testing

MBDS API

› MBDS API
 › All major MBDS features are available via simple API scripts
 › Applicable for single or all project items
 › All arguments are strongly checked on plausibility

› MBDS Remote Tool
 › Call MBDS API functions to automate MBDS features from batch jobs or OS command line.
 › MATLAB is started via COM-Interface with MBDS in silent mode

Features

- Project Item Handling
- Code & Document Generation
- Model Rule Checking
- Execute Test Suite
- Build & Download

COM Interface
Conclusions

› With the KIBES system platform Continental provides
 › Vehicle Control Hardware & Development Environment
 › ASIL B ready according ISO-26262
 › Fully automated quality assurance measures
 › Integration into CI/CT activities is supported

› VDL Activities
 › Currently quality assurance measures are applied on models implementing QM and ASIL rated features
 › Continuous integration & testing will be applied using the MBDS API and MBDS Remote
 › Statement VDL: We are working together on making the VDL software architecture future-proof with Continentals Model Based Development System
Thank you
for your attention!