What’s New in Automated Driving with MATLAB and Simulink

Mark Corless
Industry Marketing
Automated Driving Segment Manager

Marco Roggero
Application Engineering
Some common questions from automated driving engineers

- How can I synthesize scenarios to test my designs?
- How can I discover and design in multiple domains?
- How can I integrate with other environments?
Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs?

How can I discover and design in multiple domains?

How can I integrate with other environments?

Simulation Integration

- Perception
- Planning
- Control

- ROS
- CAN
- C/C++
- Python
- Cross Release
- Third Party

Control
Planning
Perception
Simulation Integration
Graphically author driving scenarios

Driving Scenario Designer
- Create roads and lane markings
- Add actors and trajectories
- Specify actor size and radar cross-section (RCS)
- Explore pre-built scenarios
- Import OpenDRIVE roads

Automated Driving Toolbox™

R2018a
Integrate driving scenarios into Simulink simulations

Test Open-Loop ADAS Algorithm Using Driving Scenario

- Edit driving scenario
- Integrate into Simulink
- Add sensor models
- Visualize results
- Pace simulation

Automated Driving Toolbox™

R2019a
Simulate driving scenarios into closed loop simulations

Automatic Emergency Braking (AEB) with Sensor Fusion
- Specify driving scenario
- Design AEB logic
- Integrate sensor fusion
- Simulate system
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

Automated Driving Toolbox™
Stateflow®
Embedded Coder®
Automate testing against driving scenarios

Testing a Lane Following Controller with Simulink Test
 - Specify driving scenario

Simulink Test™
Automated Driving Toolbox™
Model Predictive Control Toolbox™
R2018b
Synthesize driving scenarios from recorded data

Scenario Generation from Recorded Vehicle Data
- Visualize video
- Import OpenDRIVE roads
- Import GPS
- Import object lists

Automated Driving Toolbox™

R2019a
How can I design with virtual scenarios?

<table>
<thead>
<tr>
<th>Scenes</th>
<th>Driving Scenarios (cuboid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing</td>
<td>Controls</td>
</tr>
<tr>
<td></td>
<td>Controls + sensor fusion</td>
</tr>
<tr>
<td>Authoring</td>
<td>Driving Scenario Designer App</td>
</tr>
<tr>
<td></td>
<td>drivingScenario programmatic API</td>
</tr>
<tr>
<td>Sensing</td>
<td>Probabilistic radar detections</td>
</tr>
<tr>
<td></td>
<td>Probabilistic vision detections</td>
</tr>
<tr>
<td></td>
<td>Probabilistic lane detections</td>
</tr>
</tbody>
</table>
How can I design with virtual scenarios?

<table>
<thead>
<tr>
<th>Scenes</th>
<th>Driving Scenarios (cuboid)</th>
<th>Unreal Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing</th>
<th>Controls</th>
<th>Controls + vision</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controls + sensor fusion</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Authoring</th>
<th>Driving Scenario Designer App</th>
<th>Unreal Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>drivingScenario programmatic API</td>
<td></td>
</tr>
</tbody>
</table>

| Sensing | Probabilistic radar detections | Probabilistic vision detections | Probabilistic lane detections | Ideal camera (viewer) |
Simulate controls and perception systems

Lane Following Control with Sensor Fusion
Model Predictive Control Toolbox™
Automated Driving Toolbox™
Embedded Coder®

Visual Perception Using Monocular Camera
Automated Driving Toolbox™

Lane-Following Control with Monocular Camera Perception
Model Predictive Control Toolbox™
Automated Driving Toolbox™
Vehicle Dynamics Blockset™
Simulate lane controls with vision based perception

Lane-Following Control with Monocular Camera Perception

- Integrate Simulink controller
 - Lane follower
 - Spacing control

- Integrate MATLAB perception
 - Lane boundary detector
 - Vehicle detector

- Synthesize ideal camera image from Unreal Engine

Model Predictive Control Toolbox™
Automated Driving Toolbox™
Vehicle Dynamics Blockset™
Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs?

How can I discover and design in multiple domains?

How can I integrate with other environments?

![Diagram](Image)

- Perception
- Planning
- Control

Simulation Integration

- ROS
- CAN
- C/C++
- Python
- Cross Release
- Third Party
Design multi-object trackers

Extended Object Tracking
- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox™

Automated Driving Toolbox™

Updated R2019a
Design extended object trackers

Extended Object Tracking
- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox™
Automated Driving Toolbox™

Updated R2019a
Evaluate tracking performance

Extended Object Tracking
- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox™
Automated Driving Toolbox™

Updated R2019a
Evaluate error metrics

Extended Object Tracking
- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking metrics
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox™

Automated Driving Toolbox™

Updated R2019a

![Graphs showing error metrics for different trackers](image)
Compare relative execution times of object trackers

Extended Object Tracking
- Design multi-object tracker
- Design extended object trackers
- Evaluate tracking performance
- Evaluate error metrics
- Evaluate desktop execution time

Sensor Fusion and Tracking Toolbox™
Automated Driving Toolbox™
Updated R2019a
Design detector for lidar point cloud data

Track Vehicles Using Lidar: From Point Cloud to Track List
- Design 3-D bounding box detector
- Design tracker (target state and measurement models)
- Generate C/C++ code for detector and tracker

Sensor Fusion and Tracking Toolbox™
Computer Vision Toolbox™

R2019a
Design tracker for lidar point cloud data

Track Vehicles Using Lidar: From Point Cloud to Track List

- Design 3-D bounding box detector
- Design tracker (target state and measurement models)
- Generate C/C++ code for detector and tracker

Sensor Fusion and Tracking Toolbox™
Computer Vision Toolbox™
Generate C/C++ code for lidar detector and tracker

Track Vehicles Using Lidar: From Point Cloud to Track List
- Design 3-D bounding box detector
- Design tracker (target state and measurement models)
- Generate C/C++ code for detector and tracker

Sensor Fusion and Tracking Toolbox™
Computer Vision Toolbox™
Create region of interest labels and groups

Get Started with the Ground Truth Labeler

- Label rectangles
- Label lane markings
- Label pixels
- Label scenes
- Create label groups
- Create sublabels
- Add label attributes

Automated Driving Toolbox™

Updated R2019a
Create sublabels and add attributes

Get Started with the Ground Truth Labeler
- Label rectangles
- Label lane markings
- Label pixels
- Label scenes
- Create label groups
- Create sublabels
- Add label attributes

Automated Driving Toolbox™
Updated R2019a
Create polyline labels and add attributes

Get Started with the Ground Truth Labeler
- Label rectangles
- Label lane markings
- Label pixels
- Label scenes
- Create label groups
- Create sublabels
- Add label attributes

Automated Driving Toolbox™

Updated R2019a
Create pixel labels

Get Started with the Ground Truth Labeler

- Label rectangles
- Label lane markings
- Label pixels
- Label scenes
- Create label groups
- Create sublabels
- Add label attributes

Automated Driving Toolbox™

Updated R2019a
Create scene labels and groups

Get Started with the Ground Truth Labeler
- Label rectangles
- Label lane markings
- Label pixels
- Label scenes
- Create label groups
- Create sublabels
- Add label attributes

Automated Driving Toolbox™
Updated R2019a
Import custom automation algorithms

Automate Attributes of Labeled Objects

- Import automation algorithm into Ground Truth Labeling app
- Detect vehicles from monocular camera
- Estimate distance to detected vehicles
- Run automation algorithm and interactively validate labels

Automated Driving Toolbox™

R2018b
Add custom visualizations for multi-sensor data

Connect Lidar Display to Ground Truth Labeler
- Sync external tool to each frame change
- Control external tool through playback controls

Automated Driving Toolbox™ R2017a
Interoperate with neural network frameworks

Open Neural Network Exchange
Design camera, lidar, and radar perception algorithms

Detect vehicle with camera

Detect ground with lidar

Detect pedestrian with radar

Object Detection Using YOLO v2 Deep Learning

Segment Ground Points from Organized Lidar Data

Introduction to Micro-Doppler Effects

R2019a

R2018b

R2019a
Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs?

How can I discover and design in multiple domains?

How can I integrate with other environments?
Use HERE HD Live Map Data to Verify Lane Configurations
- Load camera and GPS data
- Retrieve speed limit
- Retrieve lane configurations
- Visualize composite data

Automated Driving Toolbox™
Read lane attributes from HERE HD Live Map data

Use HERE HD Live Map Data to Verify Lane Configurations
- Load camera and GPS data
- Retrieve speed limit
- Retrieve lane configurations
- Visualize composite data

Automated Driving Toolbox™ R2019a
Visualize HERE HD Live Map recorded data

Use HERE HD Live Map Data to Verify Lane Configurations

- Load camera and GPS data
- Retrieve speed limit
- Retrieve lane configurations
- Visualize composite data

Automated Driving Toolbox™

R2019a
Design path planner

Automated Parking Valet
- Create cost map of environment
- Inflate cost map for collision checking
- Specify goal poses
- Plan path using rapidly exploring random tree (RRT*)

Automated Driving Toolbox™

R2018a
Design path planner and controller

Automated Parking Valet with Simulink

- Integrate path planner
- Design lateral controller (based on vehicle kinematics)
- Design longitudinal controller (PID)
- Simulate closed loop with vehicle dynamics

Automated Driving Toolbox™

R2018b
Generate C/C++ code for path planner and controller

Code Generation for Path Planning and Vehicle Control
- Simulate system
- Configure for code generation
- Generate C/C++ code
- Test using Software-In-the-Loop
- Measure execution time of generated code

Automated Driving Toolbox™
Embedded Coder

```c
// model step function
void step0();

// model step function
void step1();

// model terminate function
void terminate();

// Constructor
AutomatedParkingValetModelClass();

// Destructor
~AutomatedParkingValetModelClass();

// Root import: '<Root>/Costmap' set method
void setCostmap(costmapBus localArgInput);

// Root import: '<Root>/GoalPose' set method
void setGoalPose(real_T localArgInput[3]);
```
Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs?

How can I discover and design in multiple domains?

How can I integrate with other environments?

Perception

Planning

Control

Simulation Integration

ROS

C/C++

Python

CAN

Cross Release

Third Party
Design lateral and longitudinal Model Predictive Controllers

Longitudinal Control

- Adaptive Cruise Control with Sensor Fusion
 - Automated Driving Toolbox™
 - Model Predictive Control Toolbox™
 - Embedded Coder®

Lateral Control

- Lane Keeping Assist with Lane Detection
 - Automated Driving Toolbox™
 - Model Predictive Control Toolbox™
 - Embedded Coder®

Longitudinal + Lateral

- Lane Following Control with Sensor Fusion and Lane Detection
 - Automated Driving Toolbox™
 - Model Predictive Control Toolbox™
 - Embedded Coder®
Train reinforcement learning networks for ADAS controllers

Train Deep Deterministic Policy Gradient (DDPG) Agent for Adaptive Cruise Control
- Create environment interface
- Create agent
- Train agent
- Simulate trained agent

Reinforcement Learning Toolbox™
R2019a
Some common questions from automated driving engineers

How can I synthesize scenarios to test my designs?

How can I discover and design in new domains?

How can I integrate with other environments?
Integrate with ROS

Replay logged ROS data

Connect to live ROS data

Generate standalone ROS node

Work with rosbag Logfiles
Robotic System Toolbox™

Exchange Data with ROS Publishers and Subscribers
Robotic System Toolbox™

Generate a Standalone ROS Node from Simulink
Robotic System Toolbox™
Simulink Coder™
Call C++, Python, and OpenCV from MATLAB

Call C++

- .hpp
- .mlx

Call Python

- `tw = ...`
- `py.textwrap.TextWrapper(...`
- `pyargs(...`
- `'initial_indent', ' % ', ...`
- `'subsequent_indent', ' % ', ...`
- `'width', int32(30))`

Call OpenCV & OpenCV GPU

- `cv::Rect`
- `cv::KeyPoint`
- `cv::Size`
- `cv::Mat`
- `cv::Ptr` ...

Install and Use Computer Vision Toolbox OpenCV Interface

Computer Vision System Toolbox™ OpenCV Interface Support Package

Import C++ Library Functionality into MATLAB

MATLAB®

- R2019a

Call Python from MATLAB

MATLAB®

- R2014a

Updated

- R2018b
Call C code from Simulink

Call C code

Create buses from C structs

typedef struct {
 double coeff;
 double init;
 fault_T fault;
} params_T;

Test and verify C code

Bring Custom Image Filter Algorithms as Reusable Blocks in Simulink

Simulink®

R2017b

Import Structure and Enumerated Types

Simulink®

R2017a

Custom C Code Verification with Simulink Test

Simulink Test™

Simulink Coverage™

R2019a
Connect to third party tools

152 Interfaces to 3rd Party Modeling and Simulation Tools
(as of March 2019)
Cross-release simulation through code generation

Integrate Generated Code by Using Cross-Release Workflow

- Generate code from previous release (R2010a or later)
- Import generated code as a block in current release
- Tune parameters
- Access internal signals

Embedded Coder

R2016a
Some common questions from automated driving engineers

- Synthesize scenarios to test my designs
- Discover and design in multiple domains
- Integrate with other environments

Perception

Planning

Control

Simulation Integration

- ROS
- CAN
- C/C++
- Python
- Cross Release
- Third Party

MathWorks
MathWorks can help you customize MATLAB and Simulink for your automated driving application

- **Voyage develops MPC controller and integrates with ROS**
 - 2018 MathWorks Automotive Conference

- **Autoliv labels ground truth lidar data**
 - Joint presentation with Autoliv
 - SAE Paper 2018-01-0043
 - 2018 MathWorks Automotive Conference

- **Ford tests algorithms with synthetic Lidar data from Unreal Engine**
 - Joint paper with Ford
 - SAE Paper 2017-01-0107
Develop Automated Driving Systems with MATLAB and Simulink

Simulation Integration

Perception

Planning

Control

Discuss your application with a MathWorks field engineer to help you structure your evaluation

- Understand your goals
- Recommend tasks
- Answer questions