Modelling Hedge Fund Returns Using State Space Models
Firm Overview
Stenham Asset Management
25-year award winning performance

» Pioneering hedge fund investment specialists since 1980s

» US$ 2billion AUM

» 37 dedicated employees

» CIO 23 years investment experience, 17 years with Stenham

» Alignment of interest: the Stenham team are significant co-investors

» Consistently won industry recognition over many years

» Authorised and regulated by the FCA, SEC, GFSC and FSB
Industry Leading Quantitative Analysis & Risk Systems
Where MATLAB fits within our risk and quantitative analysis systems

- **C*NEO**
 - Data Management & Reporting
 - Robust SQL based database solution for data storage and handling
 - Flexible Excel add-in analytics
 - Ideal for customised reporting

- **RiskData**
 - Off-the-Shelf, Returns-Based Risk System
 - Robust "polymodel" approach to factor analysis and risk management
 - Long-Term historical factor based Monte Carlo simulation
 - Conservative "StressVAR" estimates

- **AlternativeSoft**
 - Off-the-Shelf Data Analysis System
 - Flexible and responsive multi-factor approach
 - Highly interactive, intuitive and configurable
 - Modular design mirroring stages in the investment process
 - Intuitive graphical output

- **RiskMetrics**
 - Off-the-Shelf, Position-Based Risk System
 - Position-based portfolio transparency
 - Underlying portfolios updated on a monthly basis
 - Best tool for stress testing of current portfolios

- **MATLAB**
 - Data Analysis and Application Development
 - Technical, maths-based programming language
 - Extensive libraries for financial analysis
 - Ideal environment for developing proprietary models

www.stenhamassetmanagement.com
Traditional ways of modelling hedge fund returns
Traditional models for hedge fund returns

Basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]
Traditional models for hedge fund returns

Basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]
Traditional models for hedge fund returns

Basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]
Traditional models for hedge fund returns

Basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]
Traditional models for hedge fund returns

Basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]
Traditional models for hedge fund returns

Basic linear factor models: what factors to use?

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]
Traditional models for hedge fund returns

Basic linear factor models: what factors to use?

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]

- CAPM (S&P)
Traditional models for hedge fund returns

Basic linear factor models: what factors to use?

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]

- CAPM (S&P)
- Fama-French (HML, SMB)
- Carhart (Momentum)
Traditional models for hedge fund returns

Basic linear factor models: what factors to use?

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]

- CAPM (S&P)
- Fama-French (HML, SMB)
- Carhart (Momentum)
- Fung and Hsieh (2001)
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \epsilon_t \]

- Non-linearity
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]

- Non-linearity → non-linear factors
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]

- Non-linearity
- Time dependency
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]

- Non-linearity
- Time dependency
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]

- Non-linearity
- Time dependency
- Serial correlation
Traditional models for hedge fund returns

(At least) three problems with basic linear factor models

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t \]

- Non-linearity
- Time dependency
- Serial correlation \(\Rightarrow AR(p) \)
Traditional models for hedge fund returns

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models?
- Does it result in more stable parameters?
- Does inclusion of an autoregressive term provide a better fit on average?
- How does that compare with adding additional factors?
- How well do out-of-sample models perform relative to in-sample ones?
- Do the results vary across different hedge fund strategies?
- How much harder are these models to implement than a rolling window regression?
A brief introduction to State Space Models (SSM)
Introduction to State Space Models

The general form for univariate Gaussian State Space Models

\[y_t = Z_t a_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2) \]
\[a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t) \]

- \(y_t \equiv \text{observed time series (} t = 1, \ldots, n \)\)
- \(a_t \equiv (m \times 1) \text{ unobserved state variables} \)
- \(Z_t \equiv (m \times 1) \text{ observation vector} \)
- \(\varepsilon_t \equiv \text{observation error (variance } \sigma^2 \)\)
- \(T_t \equiv (m \times m) \text{ transition matrix} \)
- \(R_t \equiv (m \times r) \text{ selection matrix} \)
- \(\eta_t \equiv (r \times 1) \text{ state disturbances} \)
- \(Q_t \equiv (r \times r) \text{ disturbance covariance matrix} \)
Introduction to State Space Models

The general form for univariate Gaussian State Space Models

\[y_t = Z_t a_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2) \]
\[a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t) \]

- \(y_t \equiv \text{observed time series (} t = 1, \ldots, n \)
- \(a_t \equiv (m \times 1) \text{ unobserved state variables} \)
- \(Z_t \equiv (m \times 1) \text{ observation vector} \)
- \(\varepsilon_t \equiv \text{observation error (variance } \sigma^2 \)

- \(T_t \equiv (m \times m) \text{ transition matrix} \)
- \(R_t \equiv (m \times r) \text{ selection matrix} \)
- \(\eta_t \equiv (r \times 1) \text{ state disturbances} \)
- \(Q_t \equiv (r \times r) \text{ disturbance covariance matrix} \)
Introduction to State Space Models

The general form for univariate Gaussian State Space Models

\[
y_t = Z_t' a_t + \epsilon_t, \quad \epsilon_t \sim NID(0, \sigma_\epsilon^2) \\
a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t)
\]

\(y_t\) \equiv observed \ time \ series \ (t = 1, \ldots, n)\\n\(a_t\) \equiv (m \times 1) \ unobserved \ state \ variables\\n\(Z_t\) \equiv (m \times 1) \ observation \ vector\\n\(\epsilon_t\) \equiv observation \ error \ (variance \ \sigma_\epsilon^2)\\n
\(T_t\) \equiv (m \times m) \ transition \ matrix\\n\(R_t\) \equiv (m \times r) \ selection \ matrix\\n\(\eta_t\) \equiv (r \times 1) \ state \ disturbances\\n\(Q_t\) \equiv (r \times r) \ disturbance \ covariance \ matrix
Introduction to State Space Models

Example 1: the local level model

\[y_t = Z_t' a_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma_\varepsilon^2) \]

\[a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t) \]

\[a_t = \mu_t, \quad \eta_t = \xi_t, \quad Z_t = T_t = R_t = 1, \quad Q_t = \sigma_\xi^2 \]

\[y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma_\varepsilon^2) \]

\[\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma_\xi^2) \]
Introduction to State Space Models
Estimation of State Space Models using the Kalman filter and smoother

\[y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_{\varepsilon}) \]

\[\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2_{\xi}) \]

Source: Commandeur and Koopman (2007)
Introduction to State Space Models

Estimation of State Space Models using the Kalman filter and smoother

\[
y_t = \mu_t + \epsilon_t, \quad \epsilon_t \sim NID(0, \sigma^2_{\epsilon})
\]

\[
\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2_{\xi})
\]

1. Start at \(t = 1980 \)

Source: Commandeur and Koopman (2007)
Introduction to State Space Models

Estimation of State Space Models using the Kalman filter and smoother

\[y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2) \]
\[\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2) \]

1. Start at \(t = 1980 \)

2. You have estimated \(\alpha_t = \mu_t \) based on \(\{y_1, \ldots, y_{t-1}\} \)

Source: Commandeur and Koopman (2007)
Introduction to State Space Models

Estimation of State Space Models using the Kalman filter and smoother

\[y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2) \]

\[\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2) \]

1. Start at \(t = 1980 \)
2. You have estimated \(a_t = \mu_t \) based on \(\{y_1, \ldots, y_{t-1}\} \)
3. Before observing \(y_t \),
 your best guess for \(a_{t+1} \) is \(a_t \)

Source: Commandeur and Koopman (2007)
Introduction to State Space Models

Estimation of State Space Models using the Kalman filter and smoother

\[y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2) \]

\[\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2) \]

1. Start at \(t = 1980 \)
2. You have estimated \(a_t = \mu_t \) based on \(\{y_1, \ldots, y_{t-1}\} \)
3. Before observing \(y_t \), your best guess for \(a_{t+1} \) is \(a_t \)
4. Once you observe \(y_t \), you can use that to update \(a_{t+1} \)

Source: Commandeur and Koopman (2007)
Introduction to State Space Models

Estimation of State Space Models using the Kalman filter and smoother

\[y_t = \mu_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2) \]

\[\mu_{t+1} = \mu_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2) \]

1. Start at \(t = 1980 \)

2. You have estimated \(a_t = \mu_t \) based on \(\{y_1, \ldots, y_{t-1}\} \)

3. Before observing \(y_t \),
 your best guess for \(a_{t+1} \) is \(a_t \)

4. Once you observe \(y_t \),
 you can use that to update \(a_{t+1} \)

5. You do that by adjusting \(a_t \) by \(K_t(y_t - a_t) \)
 where \(K_t \alpha \frac{\sigma^2}{\sigma^2} \)

Source: Commandeur and Koopman (2007)
Introduction to State Space Models

Estimation of State Space Models using the Kalman filter and smoother

- Predicted state variables:
 \[\hat{a}_t | (y_1, \ldots, y_{t-1}; x_1, \ldots, x_{t-1}) \]

- Filtered state variables:
 \[\hat{a}_t | (y_1, \ldots, y_t; x_1, \ldots, x_t) \]

- Smoothed state variables:
 \[\hat{a}_t | (y_1, \ldots, y_n; x_1, \ldots, x_n) \]
Testing and comparing models for hedge fund returns
Testing and comparing models
A very basic test: how accurately can we estimate funds’ market beta?

Four models, four estimation methodologies, ~6,500 funds:

Model 1: \[y_t = \alpha_t + \beta_t x_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

Model 2: \[y_t = \alpha_t + \beta_t x_t + \phi_t y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

Model 3: \[y_t = \alpha_t + \beta_t x_t + \gamma_t z_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

Model 4: \[y_t = \alpha_t + \beta_t x_t + \gamma_t z_t + \phi_t y_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

Estimation method 1: 12mo rolling windows (out of sample)

Estimation method 2: Kalman filter (out of sample)

Estimation method 3: static linear regression (in sample)

Estimation method 4: Kalman smoother (in sample)
Testing and comparing models

Results for a sample fund – Model 2 – 12mo rolling window
Testing and comparing models

Results for a sample fund – Model 2 – Kalman filter

Components

Market beta

AR(1)

Residuals
Testing and comparing models

Results for a sample fund – Model 2 – Kalman smoother

![Graphs showing components, market beta, AR(1), and residuals over time with confidence intervals.]
Testing and comparing models

Results for a sample fund: comparing across models and estimation techniques

Cond. Forecast ≡ \{\hat{y}_t | \hat{\alpha}_t; \hat{\beta}_t; \hat{\phi}_t; \hat{x}_t; \hat{z}_t; y_{t-1}\} = y_t - \varepsilon_t
Testing and comparing models

Results across ~6,500 funds: median R2 of conditional forecast

<table>
<thead>
<tr>
<th></th>
<th>Equities</th>
<th>Eq. + AR(1)</th>
<th>Eq. + HFF</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Window (OOS)</td>
<td>11.6%</td>
<td>10.3%</td>
<td>13.6%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Kalman Filter (OOS)</td>
<td>14.5%</td>
<td>19.1%</td>
<td>21.6%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Static Linear Regression (IS)</td>
<td>14.5%</td>
<td>18.8%</td>
<td>20.9%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Kalman Smoother (IS)</td>
<td>34.6%</td>
<td>39.9%</td>
<td>45.6%</td>
<td>49.0%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across ~6,500 funds: median R^2 of conditional forecast

<table>
<thead>
<tr>
<th>Model</th>
<th>Equities</th>
<th>Eq. + AR(1)</th>
<th>Eq. + HFF</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Window (OOS)</td>
<td>11.6%</td>
<td>10.3%</td>
<td>13.6%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Kalman Filter (OOS)</td>
<td>14.5%</td>
<td>19.1%</td>
<td>21.6%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Static Linear Regression (IS)</td>
<td>14.5%</td>
<td>18.8%</td>
<td>20.9%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Kalman Smoother (IS)</td>
<td>34.6%</td>
<td>39.9%</td>
<td>45.6%</td>
<td>49.0%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across ~6,500 funds: median R² of conditional forecast

<table>
<thead>
<tr>
<th>Method</th>
<th>Equities</th>
<th>Eq. + AR(1)</th>
<th>Eq. + HFF</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Window (OOS)</td>
<td>11.6%</td>
<td>10.3%</td>
<td>13.6%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Kalman Filter (OOS)</td>
<td>14.5%</td>
<td>19.1%</td>
<td>21.6%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Static Linear Regression (IS)</td>
<td>14.5%</td>
<td>18.8%</td>
<td>20.9%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Kalman Smoother (IS)</td>
<td>34.6%</td>
<td>39.9%</td>
<td>45.6%</td>
<td>49.0%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across ~6,500 funds: median R^2 of conditional forecast

<table>
<thead>
<tr>
<th>Model</th>
<th>Equities</th>
<th>Eq. + AR(1)</th>
<th>Eq. + HFF</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Window (OOS)</td>
<td>11.6%</td>
<td>10.3%</td>
<td>13.6%</td>
<td>12.3%</td>
</tr>
<tr>
<td>Kalman Filter (OOS)</td>
<td>14.5%</td>
<td>19.1%</td>
<td>21.6%</td>
<td>25.5%</td>
</tr>
<tr>
<td>Static Linear Regression (IS)</td>
<td>14.5%</td>
<td>18.8%</td>
<td>20.9%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Kalman Smoother (IS)</td>
<td>34.6%</td>
<td>39.9%</td>
<td>45.6%</td>
<td>49.0%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across ~6,500 funds: percentage of funds with higher R^2

<table>
<thead>
<tr>
<th></th>
<th>Rolling Window (OOS)</th>
<th>Kalman Filter (OOS)</th>
<th>Static Linear Regression (IS)</th>
<th>Kalman Smoother (IS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eq.</td>
<td>Eq.+AR</td>
<td>Eq.+HFF</td>
<td>All</td>
</tr>
<tr>
<td>Eq.</td>
<td>0.0%</td>
<td>66.4%</td>
<td>45.5%</td>
<td>51.1%</td>
</tr>
<tr>
<td>Eq.+AR</td>
<td>33.6%</td>
<td>0.0%</td>
<td>34.6%</td>
<td>45.2%</td>
</tr>
<tr>
<td>Eq.+HFF</td>
<td>54.5%</td>
<td>65.4%</td>
<td>0.0%</td>
<td>65.1%</td>
</tr>
<tr>
<td>All</td>
<td>48.9%</td>
<td>54.8%</td>
<td>34.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Eq.</td>
<td>68.1%</td>
<td>70.0%</td>
<td>55.5%</td>
<td>58.7%</td>
</tr>
<tr>
<td>Eq.+AR</td>
<td>79.9%</td>
<td>83.2%</td>
<td>66.5%</td>
<td>70.9%</td>
</tr>
<tr>
<td>Eq.+HFF</td>
<td>83.0%</td>
<td>83.1%</td>
<td>82.0%</td>
<td>81.8%</td>
</tr>
<tr>
<td>All</td>
<td>88.7%</td>
<td>90.6%</td>
<td>87.5%</td>
<td>89.5%</td>
</tr>
<tr>
<td>Eq.</td>
<td>63.4%</td>
<td>65.6%</td>
<td>54.0%</td>
<td>57.2%</td>
</tr>
<tr>
<td>Eq.+AR</td>
<td>70.1%</td>
<td>74.4%</td>
<td>60.7%</td>
<td>65.5%</td>
</tr>
<tr>
<td>Eq.+HFF</td>
<td>75.4%</td>
<td>77.1%</td>
<td>73.8%</td>
<td>74.4%</td>
</tr>
<tr>
<td>All</td>
<td>81.3%</td>
<td>84.1%</td>
<td>79.5%</td>
<td>82.7%</td>
</tr>
<tr>
<td>Eq.</td>
<td>88.8%</td>
<td>88.3%</td>
<td>81.9%</td>
<td>82.7%</td>
</tr>
<tr>
<td>Eq.+AR</td>
<td>94.1%</td>
<td>95.2%</td>
<td>87.4%</td>
<td>89.4%</td>
</tr>
<tr>
<td>Eq.+HFF</td>
<td>94.5%</td>
<td>94.0%</td>
<td>95.0%</td>
<td>94.3%</td>
</tr>
<tr>
<td>All</td>
<td>97.4%</td>
<td>97.8%</td>
<td>97.3%</td>
<td>97.9%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across ~6,500 funds: median standard deviation of beta

<table>
<thead>
<tr>
<th>Model</th>
<th>Equities</th>
<th>Eq. + AR(1)</th>
<th>Eq. + HFF</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Window (OOS)</td>
<td>23.7%</td>
<td>24.7%</td>
<td>24.6%</td>
<td>25.8%</td>
</tr>
<tr>
<td>Kalman Filter (OOS)</td>
<td>15.6%</td>
<td>13.6%</td>
<td>15.0%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Static Linear Regression (IS)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Kalman Smoother (IS)</td>
<td>7.7%</td>
<td>1.0%</td>
<td>7.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across ~6,500 funds: median standard deviation of beta

<table>
<thead>
<tr>
<th></th>
<th>Equities</th>
<th>Eq. + AR(1)</th>
<th>Eq. + HFF</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling Window (OOS)</td>
<td>23.7%</td>
<td>24.7%</td>
<td>24.6%</td>
<td>25.8%</td>
</tr>
<tr>
<td>Kalman Filter (OOS)</td>
<td>15.6%</td>
<td>13.6%</td>
<td>15.0%</td>
<td>10.9%</td>
</tr>
<tr>
<td>Static Linear Regression (IS)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Kalman Smoother (IS)</td>
<td>7.7%</td>
<td>1.0%</td>
<td>7.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Testing and comparing models

Results across HF strategies: median adjusted R\(^2\) of conditional forecast

<table>
<thead>
<tr>
<th>Hedge Fund Strategy</th>
<th># funds</th>
<th>Rolling Window (OOS)</th>
<th>Kalman Filter (OOS)</th>
<th>Static Linear Regression (IS)</th>
<th>Kalman Smoother (IS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Eq.</td>
<td>Eq.+AR</td>
<td>Eq.+HFF</td>
<td>All</td>
</tr>
<tr>
<td>Arbitrage</td>
<td>301</td>
<td>11.2%</td>
<td>9.4%</td>
<td>12.9%</td>
<td>11.9%</td>
</tr>
<tr>
<td>Bottom-Up</td>
<td>268</td>
<td>13.0%</td>
<td>11.2%</td>
<td>16.8%</td>
<td>15.5%</td>
</tr>
<tr>
<td>CTA/Managed Futures</td>
<td>1014</td>
<td>11.7%</td>
<td>11.2%</td>
<td>14.3%</td>
<td>13.2%</td>
</tr>
<tr>
<td>Distressed Debt</td>
<td>112</td>
<td>15.1%</td>
<td>13.2%</td>
<td>16.6%</td>
<td>14.2%</td>
</tr>
<tr>
<td>Diversified Debt</td>
<td>24</td>
<td>6.4%</td>
<td>7.6%</td>
<td>13.6%</td>
<td>14.0%</td>
</tr>
<tr>
<td>Dual Approach</td>
<td>127</td>
<td>14.2%</td>
<td>12.8%</td>
<td>17.2%</td>
<td>14.1%</td>
</tr>
<tr>
<td>Event Driven</td>
<td>275</td>
<td>12.5%</td>
<td>10.6%</td>
<td>16.1%</td>
<td>13.9%</td>
</tr>
<tr>
<td>Fixed Income</td>
<td>504</td>
<td>10.6%</td>
<td>9.9%</td>
<td>12.2%</td>
<td>10.8%</td>
</tr>
<tr>
<td>Long Short Equities</td>
<td>2429</td>
<td>11.7%</td>
<td>10.1%</td>
<td>13.0%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Macro</td>
<td>451</td>
<td>9.8%</td>
<td>9.4%</td>
<td>11.1%</td>
<td>10.4%</td>
</tr>
<tr>
<td>Multi-Strategy</td>
<td>573</td>
<td>12.6%</td>
<td>9.8%</td>
<td>14.4%</td>
<td>12.1%</td>
</tr>
<tr>
<td>Others</td>
<td>165</td>
<td>13.2%</td>
<td>12.0%</td>
<td>16.7%</td>
<td>15.0%</td>
</tr>
<tr>
<td>Relative Value</td>
<td>141</td>
<td>11.2%</td>
<td>10.4%</td>
<td>12.0%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Top-Down</td>
<td>35</td>
<td>13.6%</td>
<td>8.4%</td>
<td>20.3%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Value</td>
<td>219</td>
<td>11.4%</td>
<td>10.6%</td>
<td>13.1%</td>
<td>12.3%</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models?
- Does it result in more stable parameters?
- Does inclusion of an autoregressive term provide a better fit on average?
- How does that compare with adding additional factors?
- How well do out-of-sample models perform relative to in-sample ones?
- Do the results vary across different hedge fund strategies?
- How much harder are these models to implement than a rolling window regression?
Conclusion
Some of the questions we wanted to investigate

• Does formally allowing for time-varying parameters improve the performance of the factor models? YES
• Does it result in more stable parameters?
• Does inclusion of an autoregressive term provide a better fit on average?
• How does that compare with adding additional factors?
• How well do out-of-sample models perform relative to in-sample ones?
• Do the results vary across different hedge fund strategies?
• How much harder are these models to implement than a rolling window regression?
Conclusion
Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models? **YES**
- Does it result in more stable parameters? **YES**
- Does inclusion of an autoregressive term provide a better fit on average?
- How does that compare with adding additional factors?
- How well do out-of-sample models perform relative to in-sample ones?
- Do the results vary across different hedge fund strategies?
- How much harder are these models to implement than a rolling window regression?
Conclusion

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models? YES
- Does it result in more stable parameters? YES
- Does inclusion of an autoregressive term provide a better fit on average? YES
- How does that compare with adding additional factors?
- How well do out-of-sample models perform relative to in-sample ones?
- Do the results vary across different hedge fund strategies?
- How much harder are these models to implement than a rolling window regression?
Conclusion

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models? YES
- Does it result in more stable parameters? YES
- Does inclusion of an autoregressive term provide a better fit on average? YES
- How does that compare with adding additional factors? Depends
- How well do out-of-sample models perform relative to in-sample ones?
- Do the results vary across different hedge fund strategies?
- How much harder are these models to implement than a rolling window regression?
Conclusion

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models? **YES**
- Does it result in more stable parameters? **YES**
- Does inclusion of an autoregressive term provide a better fit on average? **YES**
- How does that compare with adding additional factors? **Depends**
- How well do out-of-sample models perform relative to in-sample ones? **So-so**
- Do the results vary across different hedge fund strategies?
- How much harder are these models to implement than a rolling window regression?
Conclusion

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models? **YES**
- Does it result in more stable parameters? **YES**
- Does inclusion of an autoregressive term provide a better fit on average? **YES**
- How does that compare with adding additional factors? **Depends**
- How well do out-of-sample models perform relative to in-sample ones? **So-so**
- Do the results vary across different hedge fund strategies? **Not really**
- How much harder are these models to implement than a rolling window regression?
Conclusion

Some of the questions we wanted to investigate

- Does formally allowing for time-varying parameters improve the performance of the factor models? **YES**
- Does it result in more stable parameters? **YES**
- Does inclusion of an autoregressive term provide a better fit on average? **YES**
- How does that compare with adding additional factors? **Depends**
- How well do out-of-sample models perform relative to in-sample ones? **So-so**
- Do the results vary across different hedge fund strategies? **Not really**
- How much harder are these models to implement than a rolling window regression? **Not much**
Conclusion

Advantages of using a State Space Modelling framework

• Extremely flexible modelling framework.
• Easily incorporates time-varying parameters.
• Dynamic factor estimates are smoother and more reliable than those from rolling windows (at least for HF returns).
• Both in-sample and out-of-sample testing can be implemented without resource-intensive loops.
• Linear Gaussian models can be efficiently estimated using fast, efficient recursive closed-form techniques such as the Kalman filter and smoother.
• Less restrictive models (non-linear/non-Gaussian) can be estimated using modified filtering techniques or with numerical methods.
• Recursive estimation makes it easy to simulate and forecast from estimated models as well as to deal with missing data points.
• Intuitive link with Bayesian statistical methods and econometrics.
• MathWorks® and third-party SSM toolboxes readily available.
Conclusion

Advantages of using MATLAB

- MATLAB Desktop environment allows for fast and easy interactive data analysis and model research and development.
- Distinct advantages of having integrated computational and application development environments.
- Wide availability of toolboxes and third-party libraries.
- Extensive plotting and visualisation tools.
- Thorough documentation and extensive/flexible support.
- Ability to integrate with many other environments (Excel, Access, SQL, etc.).
- Ability to compile and distribute packaged applications.
- One-off product license with reasonably priced maintenance costs.
Modelling Hedge Fund Returns Using State Space Models

References

Books:

Other:

Appendix – Extra Slides
Traditional models for hedge fund returns

Modelling serial correlation and illiquidity in HF returns (Getmansky, Lo and Makarov, 2004)

\[y_t = \alpha + \sum_{j=1}^{k} \beta_j x_{j,t} + \varepsilon_t, \quad E[x_{j,t}], E[\varepsilon_t] = 0, \quad \varepsilon_t, x_{j,t} \sim \text{IID} \]

\[y_t^0 = \theta_0 y_t + \theta_1 y_{t-1} + \cdots + \theta_p y_{t-p} \]

\[\theta_j \in [0,1], \quad j = 0, \ldots, p \]

\[\sum \theta_j = 1 \Rightarrow E[y_t^0] = E[y_t] \]
Introduction to State Space Models

Example 2: a local level model with a single static market factor

\[y_t = Z_t' a_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

\[a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t) \]

\[a_t = (\alpha_t', \beta_t'), \quad \eta_t = (\xi_t', 0), \quad T_t = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Z_t = \begin{bmatrix} 1 \\ x_t \end{bmatrix}, \]

\[R_t = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad Q_t = \begin{bmatrix} \sigma^2_\xi & 0 \\ 0 & 0 \end{bmatrix} \]

\[y_t = \alpha_t + \beta_t x_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma^2_\varepsilon) \]

\[a_{t+1} = \alpha_t + \xi_t, \quad \xi_t \sim NID(0, \sigma^2_\xi) \]

\[\beta_{t+1} = \beta_t \]
Introduction to State Space Models

Example 3: a local level model with a single time-varying market factor

\[
y_t = Z_t' a_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma_{\varepsilon}^2)
\]

\[
a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t)
\]

\[
a_t = \begin{pmatrix} \alpha_t \\ \beta_t \end{pmatrix}, \quad \eta_t = \begin{pmatrix} \xi_t \\ \zeta_t \end{pmatrix}, \quad T_t = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad Z_t = \begin{pmatrix} 1 \\ x_t \end{pmatrix},
\]

\[
R_t = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad Q_t = \begin{bmatrix} \sigma_{\xi}^2 & 0 \\ 0 & \sigma_{\zeta}^2 \end{bmatrix}
\]

\[
y_t = \alpha_t + \beta_t x_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma_{\varepsilon}^2)
\]

\[
\alpha_{t+1} = \alpha_t + \xi_t, \quad \xi_t \sim NID(0, \sigma_{\xi}^2)
\]

\[
\beta_{t+1} = \beta_t + \zeta_t, \quad \zeta_t \sim NID(0, \sigma_{\zeta}^2)
\]
Introduction to State Space Models

Example 4: an AR(2) model

\[y_t = Z_t'a_t + \varepsilon_t, \quad \varepsilon_t \sim NID(0, \sigma_\varepsilon^2) \]
\[a_{t+1} = T_t a_t + R_t \eta_t, \quad \eta_t \sim NID(0, Q_t) \]

\[a_t = \begin{pmatrix} y_t \\ \phi_2 y_{t-1} \end{pmatrix}, \quad Z_t = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \]
\[T_t = \begin{bmatrix} \phi_1 & 1 \\ \phi_2 & 0 \end{bmatrix}, \quad R_t = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \]
\[\eta_t = \begin{pmatrix} \xi_{t+1} \\ 0 \end{pmatrix}, \quad Q_t = \begin{bmatrix} \sigma_\xi^2 & 0 \\ 0 & 0 \end{bmatrix}, \quad \sigma_\varepsilon^2 = 0 \]

\[y_{t+1} = \phi_1 y_t + \phi_2 y_{t-1} + \xi_{t+1} \]
\[\xi_t \sim NID(0, \sigma_\xi^2) \]