Scalable Data Science Pipelines with QuSandbox & MATLAB Online Server

Presented By:
Sri Krishnamurthy, CFA, CAP
sri@quantuniversity.com
www.quantuniversity.com

MathWorks Computational Finance Conference 2021
Online
Speaker bio

Sri Krishnamurthy
Founder and CEO
QuantUniversity

- Advisory and Consultancy for Financial Analytics
- Prior Experience at MathWorks, Citigroup and Endeca and 25+ financial services and energy customers.
- Columnist for the Wilmott Magazine
- Author of forthcoming book “Pragmatic AI and ML in Finance”
- Teaches AI/ML and Fintech Related topics in the MS and MBA programs at Northeastern University, Boston
- Reviewer: Journal of Asset Management
QuantUniversity

- Boston-based Data Science, Quant Finance and Machine Learning training and consulting advisory
- Trained more than 1000 students in Quantitative methods, Data Science and Big Data Technologies using MATLAB, Python and R
- Building QuSandbox a platform for AI and Machine Learning Experimentation
Agenda

1. Data Science Pipelines & QuSandbox
2. Case study:
 - NLP Pipeline for Sentiment Analysis of EDGAR filings
Pipelines and the QuSandbox
Machine Learning Workflow

Data Engineer, Dev Ops Engineer

Data Scraping/Ingestion → Data Exploration → Data Cleansing and Processing → Feature Engineering

Robotic Process Automation (RPA) (Microservices, Pipelines)

Risk Management/Compliance (All stages)

Model Deployment/Inference
- SW: Web/Rest API
- HW: GPU, Cloud
- Monitoring

Model Selection
- AutoML
- Model Validation
- Interpretability

Model Evaluation & Tuning
- Hyper-parameter tuning
- Parameter Grids

Model Selection
- Regression
- KNN
- Decision Trees
- Naive Bayes
- Neural Networks
- Ensembles

Analysts & Decision Makers

Software/Web Engineer

Data Scientist/Quants

Data Engineer, Dev Ops Engineer

Data Scraping/Ingestion → Data Exploration → Data Cleansing and Processing → Feature Engineering

Robotic Process Automation (RPA) (Microservices, Pipelines)

Risk Management/Compliance (All stages)

Model Deployment/Inference
- SW: Web/Rest API
- HW: GPU, Cloud
- Monitoring

Model Selection
- AutoML
- Model Validation
- Interpretability

Model Evaluation & Tuning
- Hyper-parameter tuning
- Parameter Grids

Model Selection
- Regression
- KNN
- Decision Trees
- Naive Bayes
- Neural Networks
- Ensembles

Analysts & Decision Makers

Software/Web Engineer

Data Scientist/Quants
The QU approach

EDUCATION
QUACADEMY

EXPERIMENTATION
QUTOOLBOX

ENABLEMENT
QUSANDBOX

Request DEMO at info@qusandbox.com
1. Introduction to ML, AI and Risk

2. Stress testing and Scenario generation

3. Metrics and Evaluation for risk in models

4. Assessing and Outlining

5. Model Validation of ML Models

6. Finalization and Review
Project Name: ML - Sklearn

Project Description: This model predicts whether breast cancer is benign or malignant based on image measurements.

Project ID: 0d371a9d315447d3af8e9c8adaac23e6

Experiment Name: ML - SKLearn Experiment

Experiment Description:

Experiment ID: 59b00d287b69428b8e6144df25c51d6d
Case study
Goal

- Understanding sentiments in Earnings call transcripts

CORPORATE PARTICIPANTS
Dana Quattrochi athenahealth, Inc. - IR
Jonathan Bush athenahealth, Inc - Chairman and CEO
Tim Adams athenahealth, Inc - CFO
Andy Hurd Epocrates - President and CEO
Rob Cosinuke athenahealth, Inc. - Chief Marketing Officer

CONFERENCE CALL PARTICIPANTS
Sean Wieland Piper Jaffray & Co. - Analyst
Jamie Stockton Wells Fargo Securities, LLC - Analyst
George Hill Citigroup - Analyst
Greg Belau Sterne, Agee & Leach - Analyst
Ryan Daniels William Blair & Company - Analyst
Rich Close Avondale Partners - Analyst
Sandy Draper Raymond James - Analyst
David Bayer Northland Securities - Analyst
Dave Windley Jefferies & Co. - Analyst
Charles Rhyee Cowen and Company - Analyst
Bret Jones Oppenheimer & Co. - Analyst
Michael Cherny ISI Group - Analyst
Tony Bartsch Park West Asset Management - Analyst

PRESENTATION
Operator

Welcome to the athenahealth conference call. I would now like to turn the call over to Ms. Dana Quattrochi. You may now begin.

Dana Quattrochi - athenahealth, Inc. - IR

Good morning and thank you for joining us. With me on the call today is Jonathan Bush, our Chairman and CEO; Tim Adams, our Chief Financial Officer; Rob Cosinuke, our Chief Marketing Officer; and Andy Hurd, President and CEO of Epocrates.
Challenges

• Interpreting emotions
• Labeling data
NLP pipeline

Stage 1: Data Ingestion from Edgar
Stage 2: Pre-Processing
Stage 3: Invoking APIs to label data
Stage 4: Compare APIs
Stage 5: Build a new model for sentiment Analysis

- Amazon Comprehend API
- Google API
- Watson API
- Azure API
10 THINGS YOU NEED TO KNOW ABOUT MODEL GOVERNANCE FOR AI/ML MODELS

1. DEFINING MODELS
Models are not just restricted to code and associated parameters. You have to factor data, the programming environment and packages, parameters and hyperparameters along with the model code.

2. GOVERNING MACHINE LEARNING MODELS
You could have hundreds of machine learning models working alongside traditional models. A comprehensive framework is needed to factor the nuances of machine learning models in your governance process.

3. MODEL VERIFICATION AND VALIDATION OF MACHINE LEARNING MODELS
It’s not just sufficient to verify if machine learning models work with historical test/validation datasets from a technical perspective. You have to validate if the models can be used for business decision making.

4. PERFORMANCE METRICS AND EVALUATION CRITERIA
The choice of performance metrics and evaluation criteria depends on how the models would be used and for what purpose. Evaluate the choices carefully.

5. MODEL INVENTORY AND TRACKING
Avoid model “clutter” by having a formal model inventory and tracking system. You need to track models, data snapshots, parameters, hyperparameters, programming environments etc. In addition, the entire pipeline needs to be tracked. Provenance tracking is important for repeatability.

6. DATA GOVERNANCE AND MODEL GOVERNANCE
Machine learning models are by design data driven. Integrating Data governance and model governance aspects is essential.

7. DEVELOPMENT MODELS VS PRODUCTION MODELS
As you design models for inference, scalability, performance considerations need to be factored. Models may have to be redesigned/compiled to factor production requirements. It is important to test models to ensure production models behave as they were designed.

8. FAIRNESS, REPRODUCIBILITY, AUDITABILITY, EXPLAINABILITY, INTERPRETABILITY, BIAS
Depending on the application, models should be evaluated to ensure Fairness, Reproducibility, Auditability, Explainability, Interpretability & Bias considerations are met.

9. MACHINE LEARNING CHOICES
As the field of machine learning matures, you have multiple options. Automatic Machine Learning, ML as a service, Pre-trained models and models developed from scratch etc. bringing different model governance considerations.

10. ROLES AND RESPONSIBILITIES
With AI and ML making strides, you have many new roles in your model building workflow. (Data engineers, scientists, model evaluators, cloud engineers, DevOps, ML ops etc.). Factor the new roles and define clear responsibilities for all the key stakeholders in the model lifecycle.
Request DEMO at info@qusandbox.com
Thank you!

Contact

Sri Krishnamurthy, CFA, CAP
Founder and CEO
QuantUniversity LLC.

LinkedIn: srikrishnamurthy

www.QuantUniversity.com