Designing Mechatronic Systems

Jean-Baptiste Lanfrey
Technical Manager
MathWorks Australia
Key Points

- Create intuitive models that all teams can share
- Simulate system in one environment to
 - Perform tradeoff studies
 - Optimise system performance
- Test without prototypes
Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
- Optimising System-Level Design
- HIL testing
Example: Aileron Actuation System

- **System**

 - Desired Angle → Controller → Actuator Force → Measured Angle

- **Simulation goals**
 1. Determine requirements for actuation system
 2. Test actuator designs
 3. Optimise system performance
 4. Run simulation on real-time hardware for HIL tests
Traditional Design Process

Requirements

Cannot validate design against requirements

Design

Cannot test or optimise fully integrated design

Can only find problems using hardware prototypes

Implementation

Manual coding is slow, buggy, and hard to verify

Integration and Test

- Control
- Mechanical
- Electrical

- Emb. Code
Model-Based Design

- **Requirements**
 - Cannot validate design against requirements.
 - Manual coding is slow, buggy, and hard to verify.
 - Can only find problems using hardware prototypes.

- **System Level Design**
 - Cannot test or optimize fully integrated design.

- **Implementation**
 - Control
 - Mechanical
 - Electrical

- **Test & Verification**
 - Lower costs using HIL tests.
 - Optimize design in a single simulation environment.

- **Integration and Test**
 - Detect errors right away with continuous verification.
 - Save time by automatically generating embedded code.
Agenda

- **Example: Flight actuation system**
 - Benefits of Model-Based Design

- **Actuator design**
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs

- Optimising System-Level Design
- HIL testing
Modeling the Mechanical System

System:

Problem: Model the mechanical system within Simulink

Solution: Import the mechanical model from CAD into Simscape Multibody
Determining Actuator Requirements

Problem: Determine the requirements for an aircraft aileron actuator

Solution: Use Simscape Multibody to model the aileron and Simscape to model an ideal actuator
Testing Electrical and Hydraulic Designs

Problem: Test different actuator designs in the system

Solution: Use Simscape Fluids and Simscape Electronics to model the actuators, and variant subsystems to test them
Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design
- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs
- Optimising System-Level Design
- HIL testing
Optimising System Performance

Problem: Optimise the speed controller to meet system requirements

Solution: Tune controller parameters with Simulink Design Optimization

Model:

\[\omega \quad \text{Speed Control} \]

\[i \quad \text{Current Control} \]

\[\omega \quad \text{Angle} \]

\[K_p \quad 0.3 \quad K_i \quad 0.29 \]

Aileron Angle

Actuator Force
Agenda

- Example: Flight actuation system
 - Benefits of Model-Based Design

- Actuator design
 - Modeling the mechanical system
 - Determining actuator requirements
 - Testing Electrical and Hydraulic Designs

- Optimising System-Level Design

- HIL testing
Configuring an Electrical Actuator for HIL Testing

Problem: Configure solvers to minimize computations and convert to C code for real-time simulation

Solution: Use Simscape local solvers on stiff physical networks and Simulink Coder™ to generate C code
Key Points

- Create intuitive models that all teams can share
- Simulate system in one environment to
 - Perform tradeoff studies
 - Optimise system performance
- Test without prototypes

Requirements

1. Mechanical System