INCREASING ENERGY EFFICIENCY BY MODEL BASED DESIGN

GREGORY PINTE
THE MATHWORKS CONFERENCE 2015
EINDHOVEN

23/06/2015
FLANDERS MAKE

- **Strategic Research Center** for the manufacturing industry

- Integrating the power of **industry, industrial research centers** (FMTC, Flanders’ DRIVE) & **university research labs** in one common research agenda

- Open innovation environment enabling **structural collaboration** in research between industry - Flanders Make - academia

- **Accelerate** technological innovation in the Flemish manufacturing industry

- Cross-border and **international** collaboration
MISSION FLANDERS MAKE

“To strengthen the long-term international competitiveness of the Flemish manufacturing industry by carrying out excellent, industry-driven, pre-competitive research in the domains of mechatronics, product development methods and advanced manufacturing technologies”
FLANDERS MAKE RESEARCH PROGRAMS

- Clean energy efficient motion systems
- Smart monitoring systems
- High-performance Autonomous Mechatronic Systems
- **Intelligent product design methods**
 - Design and Manufacturing of Smart and Lightweight Structures
 - Additive Manufacturing
 - Manufacturing for high precision products
 - Agile & Human-centered production and robotic systems

- Model based design for energy efficiency!
Overview

- **Introduction**

- Example 1: energy storage in a hydrostatic drivetrain

- Example 2: energy efficiency increase of a badminton robot

- Summary and conclusions
INTRODUCTION

NEED FOR INCREASED ENERGY EFFICIENCY
Background: scarcity of energy

△ Societal awareness
 △ Consider energetic impact of the things you are doing
 △ Be ‘green’
 △ Increasingly stringent legislation

△ Economic angle
 △ Increasing prices for energy
 △ Contribution of cost of consumed energy during use phase of machine in Total Cost of Ownership increases

△ As a results
 △ Need to reduce energetic footprint machines
 △ Energy efficiency (during use phase) becomes a differentiating performance characteristic
Reduce energy consumption during the use phase (I)

General approach

1. Avoid useless energy consumption
 - E.g. Reduce stand-by losses

2. Minimize inevitable losses in functional components
 - E.g. Use energy efficient components, e.g. energy-efficient motors

3. If the process generates energy, recuperate it or reuse it
 - Braking energy
 - Waste heat
Reduce energy consumption during the use phase (II)

△ Applied to drivelines of production machines and vehicle
 △ Component level
 - Use energy efficient components
 - However: might cause performance changes, e.g. electrical motor for dynamic applications
 △ System level
 - Allows taking into account interaction between components in machine
 - Most opportunities, but less straightforward

⇒ Take energy consumption into account during the design of new machines
Motivation, vision, objective and approach

△ Vision
 △ Future mechatronic systems will be developed following a model-based design approach

△ Motivation
 △ Model-based design is essential to
 - Reduce development effort/cost
 - Decrease the time-to-market
 - Explore the space of possible designs more rigorously
 - Deal with increasing number of system requirements
Model based design taking into account energy efficiency

△ Model based design
 △ Opportunity to quickly evaluate the impact of design changes
 – Describe behavior components mathematically
 – Combine components
 – Simulate and analyze machine behavior

△ Difficulty with energy
 – Multi-disciplinary (mechanical, electrical, hydraulic, etc.)
 – Changes form during a machining process

 – 1D Simulation softwares exist that allow modeling of energetic behaviour
CASE STUDY 1: ENERGY STORAGE IN A HYDROSTATIC DRIVETRAIN
Hydrostatic drivetrain

- Heavy load vehicles
- Hydrostatic drivetrain
 - Combustion engine to pump to hydraulic motors to 1 or more loads
 - Variable stroke volumes
 → continuously variable transmission ratio
Hydrostatic drivetrain

▲ Experimental setup at FMTC
▲ Simulate a loaded hydrostatic drivetrain
 – Speed controlled electric motor instead of diesel engine
 – Torque controlled electric motors and flywheels to emulate load
▲ Energy storage?
Concept generation

Model-based concept analysis

Concept selection
Energetic model

- Start from model of original set-up
- Identify loss parameters based on experiments
- Expand model with models of energy storage elements
Component optimization

- Cost function
 - Total cost of ownership

- Optimal control

- Electrical hybrid
 - Capacitor bank dimensioning
 - Number of capacitors per serial branch
 - Number of parallel branches

- Hydraulic hybrid
 - Accumulator volume
Concept selection

Total cost

€ 0 | € 5,000 | € 10,000 | € 15,000 | € 20,000

No hybrid | Electrical hybrid | Hydraulic hybrid

Energy losses

- Others
- Hydraulic motors
- Pump
- Driving motor
- Brake energy

-16.20% | -26.41%

No hybrid | Electrical hybrid | Hydraulic hybrid
Physical interpretation

- Electrical hybrid
- Hydraulic hybrid
CASE STUDY 2:
ENERGY EFFICIENCY INCREASE OF A BADMINTON ROBOT
Badminton robot

Demonstration platform
First attempt to reduce energy consumption

- Engineering reasoning of main losses
 - Robot is mainly accelerating and decelerating masses
 - Deceleration energy is ‘burned’ in braking resistor

- Reduce energy consumption?
 - Recuperate braking energy and reuse this energy
 - Capacitors added to system
 - Very little reduction in energy consumption (under 5%)!

- Why is this so?
 - More systematic analysis needed!
Goal of the analysis

- Energy consuming elements in model
 - E.g. Brake resistance, coil resistance, friction,…

- Parameter tuning
 - From catalogues (e.g. motor parameters)
 - Experimentally (e.g. friction parameters)
Energy flow analysis results

- Main loss can be attributed to copper losses and friction losses

Solution?

- Reduce friction losses
 - Other guides? => reduce friction
 - \(\sim I^2; I \sim F; F \sim \text{acceleration} \) => reduce acceleration!
Improvement: Energy efficient controller

▲ Go from Time Optimal to Just-In-Time controller
 ▲ Current implementation
 – Time optimal
 ▲ Just-in-time controller
 – Same structure
 – Bounds on trajectory parameters: V_{max} and A_{max}
 – Parameters found using Multi-Objective optimization using the model of the robot
 ▲ Significant reduction in energy consumption!
 ... without loss of effectiveness!
 – more than 50% of energy reduction
Industrial application

Similar design analysis and controller development has been applied to the design of the drivetrain of a crane.
CONCLUSIONS

Conclusion

△ Motivation: Energy reduction for environmental and economic reasons

△ Approach

△ Take energy consumption into account on system level
△ Following mechatronic model based approach allows to optimize (energy efficiency of) the design