What’s New in MATLAB and Simulink

Stephan van Beek
Technical Manager
Applications Engineering Group
MathWorks Benelux
June 11, 2015
Imagine making your applications run faster than you ever thought possible!
Imagine stepping **forward** through a simulation
Imagine stepping forward and back through a simulation
Usability
Where is MATLAB and Simulink Today?
Connecting to and Targeting Hardware

Host Computer
- MATLAB and Simulink Models
- MATLAB Hardware Support Packages

Target
- Simulink Hardware Support Packages

Data I/O
- Ethernet, USB, Bluetooth

Low Cost Hardware
- Android Sensors
- Lego EV3
- Arduino

Get Support Package Now

Exhibitor:
Vision algorithm design and Hardware Implementation on Xilinx Zynq

Connect low-cost hardware directly to MATLAB and Simulink

iPhone
MATLAB
New fundamental data types

- **table**
 - For mixed-type tabular data
 - Supports flexible indexing
 - Built-in functionality (merge, sort, etc.)

- **categorical arrays**
 - For discrete non-numeric data
 - Values drawn from a finite set of possible values ("categories")
 - Can be compared using logical operators
 - Similar to numeric arrays
MATLAB
Importing Data

- Import Tool
 - Interactive import of delimited and fixed-width text files
 - Provides improved handling of numbers, text, and dates
 - Automatically generate MATLAB code (scripts and functions) to automate the process

- Access online data (**webread**)
 - JSON, CSV, and image data

- Read and write data from network-connected devices (**tcpclient**)

Usability
Where is MATLAB and Simulink Today?

Exhibitor:
Model-Based Control Design and Rapid Prototyping of a Motion System
Simulink – Accelerate Model Building
Smart Editing Cues
Simulink: Comment Out and Comment Through

Comment a block so that the output equals the input

- Signal passes through the block during simulation
- Comment out option remains available
- Works on blocks with the same number of inputs and outputs
New Graphics System

Overview

- **New look**
 - New default colormap and line colors
 - Anti-aliased fonts and lines
 - Subtler grid lines

- **Easier to customize**
 - Graphics objects now behave like other MATLAB objects
 - Support dot-notation to access and change properties

Data easier to interpret

\[
\begin{align*}
\text{\texttt{p = plot(x,y);}} \\
\text{\texttt{p.Color = 'red';}}
\end{align*}
\]
New Graphics System

- Multilingual text and symbols
- Automatic updating of datetime tick labels
- New visualization functions
 - histogram
 - animated line
- Multiple colormaps per figure
- Rotatable tick labels
- User interfaces with tab panels
MATLAB: Date and Time Arrays
Simulink – Better Simulation Data Analysis

New Simulation Data Inspector
Simulink – Tune and Monitor Your Simulations

New graphical controls and displays in Simulink
Scalability
Data Capabilities in MATLAB

Memory and Data Access
- 64-bit processors
- Memory Mapped Variables
- Disk Variables
- Databases
- Datastores

Programming Constructs
- Streaming
- Block Processing
- Parallel-for loops
- GPU Arrays
- SPMD and Distributed Arrays
- MapReduce

Platforms
- Desktop (Multicore, GPU)
- Clusters
- Cloud Computing (MDCS on EC2)
- Hadoop
Simulink – Performance Advisor
Simulink – Faster Consecutive Simulations

Fast Restart
Stateflow: Start Simulation Faster
Just-In-Time Compilation

Presentation: Verify, Validate, and Document Models and Code
Collaboration
MATLAB and Simulink: Managing Code and Models

Source Control Integration

- Manage code from MATLAB Desktop and Simulink Projects
- Leverage source control capabilities
 - Git and Subversion integration in Current Folder browser
- Use Comparison Tool to view and merge changes between revisions
Simulink – Sharing Projects

Share a project on GitHub® via e-mail or as a MATLAB Toolbox

- Make your project publicly available on GitHub
- Share your project via email
- Package your project as a MATLAB toolbox
Simulink Data Dictionary

Store, edit and access design data using the data dictionary

- Componentization
- Scalability and performance
- Requirements linking
- Change tracking and differencing
- Defined model-data relationship
- Integration with Simulink Projects
Concluding Remarks

- Methods for improving **ease-of-use** during the design process

- Convey information in a universal manner and make it **simple to share**

- “**Scale up**” and “**Scale out**”

- Work together to a common purpose to achieve **business benefits**
Visualization
Collaboration
Usability
Scalability