
0

Polyspace代码静态分析

保障嵌入式软件可靠性

Lehua Hu, MathWorks

1

引子

2

引子

gcc vc++

3

引子

4

这段代码呢？

5

内容提纲

形式化证明与软件可靠性

集成Polyspace开发流程中

支持功能安全和信息安全的形式化方法使用

6

高可靠性的敌人：运行时错误

▪ A runtime error is error that occurs while a program is

running and typically caused by issues such as division

by zero, attempting to access memory that is not

allocated, or using a variable without initializing it.

▪ Runtime errors can cause a program to terminate or

behave unexpectedly. Unlike syntax errors, runtime errors

are can ONLY detected while the program is executing, and

compilers CANNOT detect runtime error.

77

Propulsion system

repeatedly shut down.

Divide-by-zero error

Patients severely overdosed.

6 Killed. Race Condition

Overflow Error

weapons control error.

28 American soldiers killed

100+ soldiers wounded

Accumulating Error

爱国者防空导弹
“拦截失败，误伤自军”

USS 约克镇号
无法航行

Therac 25
严重剂量过大

未检测出的软件bug所导致的灾难性后果

嵌入式软件可靠性的挑战

8

99

传统测试方法在应对关键运行时错误问题上能力不足

动态测试

完全依赖测试用例，覆盖率有局限

时间成本、人力成本高

测试用例，尤其是边界/覆盖率测试，设计困难

测试用例随应用复杂急剧增加

问题反馈之后

查出问题浮于表面

在目标机上运行费时费力

基于需求的功能测试

一般静态分析

主要针对规则和语法类问题

语义分析对复杂代码理解有限

动态特性和运行时行为无法捕捉

深度bug漏报的问题

MISRA 规则检查和基于规则的缺陷

10

Polyspace 产品家族

静态分析工具 Bug Finder

形式化工具 Code Prover
Prove Software Runtime Correctness

Architecture Analysis

Detect Safety and Security Vulnerabilities

Check Adherence to Coding Standards

Compute Source Code Metrics

动态测试工具 PSTest

Test Authoring

Test Execution, Coverage and Profiling

Test Management

评审中心 PSAccess
Online review and collaboration on Polyspace results

IDE Plugin for checking local coding rules and issues

11

形式化证明

缺陷&漏洞
检查

编码规范、
信息安全指

南

代码度量

形式化工具Code Prover
→Fully Trusted Components

• Reliable, Robust, Safe, Secure

• Proven free of critical runtime

defects and vulnerabilities

• Additional credits for standards.

完整的静态解决方案

静态分析工具Bug Finder
→High Quality, Secure, Compliant Code

• Measurable, Maintainable, Consistent

• Very few defects or vulnerabilities

• Credits for functional safety,

cybersecurity standards.

1212

x

y
y = x

+

+
+

+

+
+

+
+

+ +
+
+

+
+

+

+
+

+
+

+

+

+

+
+

+
+

+
+
+

+
+

+

++

+ +

+

+
++

+

+

+ +

+

+

+

+ • 无需测试用例

• 无需执行代码

• 静态分析

抽象解释法的形式化
验证 y=x/(x-y) 的除零

13

使用 Polyspace Code Prover 证明代码安全无虞

14

如何衡量软件内部质量

代码度量编码规范运行时错误 缺陷&漏洞

为什么这些是好的衡量方式？

市场最佳实践

符合行业标准

工具结合评审

1515

3月后 6月后T0

软件的改进，但无确切的可
衡量的证明。

一般静态分析

只能说明有问题，不能说明没
问题。不能用于证明代码正确
性。

. .
.

.
.

.
.
.

安全证明
0%

安全证明可行、可度量

Code Prover 有何独到之处？

1616

应用 polyspace 到开发流程

软件工程师

质保工程师

架构工程师
软件工程师
质量工程师

实现

集成测试

验收测试

单元测试

设计

规格/任务书

Code Prover

Bug Finder软件工程师
质量工程师
测试工程师

- 查找并修复本地缺陷
- 查找并修复MISRA等规范问题

- 修复或解释运行时错误
- 证明模块中无运行时错误

- 查找并修复集成问题
- 函数/变量声明不匹配
- 共享变量访问冲突

- 软件质量度量
- 验证编码规范符合性
- 质量报告生成
- 全局变量访问安全

- 软件质量趋势
- 缺陷任务分配
- 问题分布

管理人员

As You Code

Access

17

编译 质量门
代码分析

Polyspace Bug

Finder Server

Polyspace Code

Prover Server

Polyspace

Access

测试仓库测试
Polyspace as

You Code*

开发工程师

基线结果

IDE

质量监控

团队评审

编译

本地单元开发和测试工作流

持续集成工作流

构建工程师

Bug Finder

Code Prover
Bug Finder

Code Prover

Pre-push

Bug Finder

Code Prover

模型工程师
测试

应用 polyspace 到开发流程

1818

编码时即检测和修复缺陷 </>

在IDE中编码的早期发现问题安全隐

患

常见缺陷和漏洞、编码规范等

支持Eclipse、VS 和 VS Code

提供与代码编辑器和IDE的集成 API

1919

编码时即检测和修复缺陷

20

使用桌面版扩大分析

声明不匹配

修饰符不匹配

类型别名冲突

死锁/重复锁等

证明无运行时错误
健壮性分析

上溢/下溢
除零
数组越界
缓存访问越界
非法指针解引
并发访问保护证明

数据流分析

控制流分析

堆栈统计

2121

问题列表

快速定位根本原因

问题发生过程

问题详情

评审区

功能项

22

生成验证Bug Finder检查项的测试用例

23

生成验证Bug Finder检查项的测试用例

2424

形式化交付安全的单元软件

25

数据流和多任务共享变量访问的证明

绿色: 安全可靠
共享内存访问安全

橙色: 未被证明
共享内存的访问可能不安全

变量范围
变量在程序中所有位置的变化

任务和中断
对共享内存的读写操作

保护方式
共享变量的保护方式或未保护

2626

推送前自动分析
以 GitLab 为例

分析流程化和强制化

防止问题代码带入到控制库

受控库最后的把关

27

集成Polyspace到您的CI工作流中

2828

1 2 3 4

Te
ch

n
iq

u
e

 /
 M

e
as

u
re

27 - - R H

26 - R H H

25 R H H -

24 R H H H

23 R H H H

22 R R H H

21 R R R R

20 - R R H

19 R R H H

18 H H H H

17 R R H H

16 R R H H

15 R H H H

14 H H H H

13 - N N N

12 - N N N 1 2 3 4

11 R R H H 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 R R R R

10 R R - - R R H H - - R R 1 2 3 4 1 2 3 4 R R R H 1 2 3 4 R R R H

9 - - R H R H H H R R H H R R H H R H H H R R H H H H H H

8 R R - N H H H H R H H H R R H H R H H H R H H H 1 2 3 4 R R H H - - R R

7 SIL - - R H R H H H R R H H 1 2 3 4 H H H H R H H H 1 2 3 4 - R H H H H H H R R R H R R R R R R R R 1 2 3 4

6 1 2 3 4 - - - R 1 2 3 4 H H H H R R H H R R H H H H H H R R H H R R H H - R H H R R R H 1 2 3 4 R R R R R R R R R R H H H H H H

5 R R H H - R R H H H H H - R H H R R H H R R H H R H H H R R H H R R R R R H H H R R R H R R R R 1 2 3 4 R H H H R R H H R R R R H H H H

4 R R H H - R R - R H H H R R H H H H H H 1 2 3 4 H H H H - R H H R H H H - R H H - R R R R R H H R H H H R R R R - R H H 1 2 3 4 R R H H R H H H R R R R

3 R R H H R R R H - - H H - R R H H H H H H H H H R R H H R H H H R H H R R R H H - R H H - R R R - - R R R R R R - R R H H H H H R R R R R H H H R H H H

2 - R R H R R R H H H H H R H H H R H H H R R H H R R H H H H H H R R R R R R R R R H H H R R R R R R H H R R R R - R H H H H H H R R H H R R R R R R H H

1 R R H H - R H H H H H H H H H H - R R R R R H H - R R H H H H H - R R H R R R R H H H H R H H H - - R R R R R R R R R R R R H H R R H H R R H H H H H H

A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9

Table

IEC 61508 Part 3 – Polyspace Bug Finder Supports…

Table A.3 – Software Design and
Implementation – Support Tools and

Programming Language

Technique /
Measure

SIL

1 2 3 4

(…)

3 Language subset - - HR HR

2
Strongly typed
programming language

HR HR HR HR

(…)

Table B.9 – Modular Approach

Technique / Measure
SIL

1 2 3 4

(…)

5
One entry/one exit point in subroutines
and functions

HR HR HR HR

4
Parameter number limit / fixed
number of subprogram parameters

R R R R

(…)

2 Software complexity control R R HR HR

1 Software module size limit HR HR HR HR

Table B.8 – Static Analysis

Technique / Measure
SIL

1 2 3 4

(…)

9
Static analysis of run time error
behavior

R R R HR

(…)

Table A.8 – Modification

Technique / Measure
SIL

1 2 3 4

(…)

3 Reverify affected software modules R HR HR HR

2 Reverify changed software module HR HR HR HR

(…)

Table A.2 – Software Design and
Development – Software Architecture Design

Technique / Measure
SIL

1 2 3 4

(…)

14 Static resource allocation - R HR HR

(…)

Table B.1 – Design and Coding Standards

Technique / Measure
SIL

1 2 3 4

8 No automatic type conversion R HR HR HR

7
No unstructured control flow in
programs in higher level languages

R HR HR HR

6 Limited use of recursion - R HR HR

5 Limited use of pointers - R HR HR

(…)

3a No Dynamic Variables - R HR HR

2 No Dynamic Objects R HR HR HR

1
Use of coding standard to reduce
likelihood of errors

HR HR HR HR

2929

1 2 3 4

Te
ch

n
iq

u
e

 /
 M

e
as

u
re

27 - - R H

26 - R H H

25 R H H -

24 R H H H

23 R H H H

22 R R H H

21 R R R R

20 - R R H

19 R R H H

18 H H H H

17 R R H H

16 R R H H

15 R H H H

14 H H H H

13 - N N N

12 - N N N 1 2 3 4

11 R R H H 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 R R R R

10 R R - - R R H H - - R R 1 2 3 4 1 2 3 4 R R R H 1 2 3 4 R R R H

9 - - R H R H H H R R H H R R H H R H H H R R H H H H H H

8 R R - N H H H H R H H H R R H H R H H H R H H H 1 2 3 4 R R H H - - R R

7 SIL - - R H R H H H R R H H 1 2 3 4 H H H H R H H H 1 2 3 4 - R H H H H H H R R R H R R R R R R R R 1 2 3 4

6 1 2 3 4 - - - R 1 2 3 4 H H H H R R H H R R H H H H H H R R H H R R H H - R H H R R R H 1 2 3 4 R R R R R R R R R R H H H H H H

5 R R H H - R R H H H H H - R H H R R H H R R H H R H H H R R H H R R R R R H H H R R R H R R R R 1 2 3 4 R H H H R R H H R R R R H H H H

4 R R H H - R R - R H H H R R H H H H H H 1 2 3 4 H H H H - R H H R H H H - R H H - R R R R R H H R H H H R R R R - R H H 1 2 3 4 R R H H R H H H R R R R

3 R R H H R R R H - - H H - R R H H H H H H H H H R R H H R H H H R H H R R R H H - R H H - R R R - - R R R R R R - R R H H H H H R R R R R H H H R H H H

2 - R R H R R R H H H H H R H H H R H H H R R H H R R H H H H H H R R R R R R R R R H H H R R R R R R H H R R R R - R H H H H H H R R H H R R R R R R H H

1 R R H H - R H H H H H H H H H H - R R R R R H H - R R H H H H H - R R H R R R R H H H H R H H H - - R R R R R R R R R R R R H H R R H H R R H H H H H H

A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 B.1 B.2 B.3 B.4 B.5 B.6 B.7 B.8 B.9

Table

IEC 61508 Part 3 – Polyspace Code Prover Adds…
Table A.3 – Software Design and Implementation –

Support Tools and Programming Language

Technique / Measure
SIL

1 2 3 4

(…)

2 Strongly typed programming language HR HR HR HR

(…)

Table A.5 – Software Design and
Development – Software Module

Testing and Integration

Technique /
Measure

SIL

1 2 3 4

10 Formal verification - - R R

(…)

Table A.8 – Modification

Technique /
Measure

SIL

1 2 3 4

(…)

3
Reverify affected
software modules

R HR HR HR

2
Reverify changed
software module

HR HR HR HR

(…)

Table A.9 – Software Verification

Technique /
Measure

SIL

1 2 3 4

(…)

1 Formal proof - R R HR

Table B.1 – Design and Coding
Standards

Technique /
Measure

SIL

1 2 3 4

8
No automatic
type conversion

R HR HR HR

(…)

6
Limited use of
recursion

- R HR HR

5
Limited use of
pointers

- R HR HR

(…)

Table B.8 – Static Analysis

Technique /
Measure

SIL

1 2 3 4

(…)

9
Static analysis of run
time error behavior

R R R HR

(…)

4 Data flow analysis R HR HR HR

3 Control flow analysis R HR HR HR

(…)

1
Boundary value
analysis

R R HR HR

Key:

Bug Finder Credit

Code Prover Credit

Code Prover Enhances Bug Finder

3030

产品开发阶段的需求（ISO 21434）

Use of MISRA C:2012 [17] or CERT C [18] for secure coding in the “C” programming language.

• Follow Security Coding Standards

• Avoid Vulnerabilities Due to Improper Use

• Dataflow/Control Flow

• Resources Analysis

• Unidentified Weakness Confirmation

31

Polyspace 支持信息安全编码标准
Update to 2024b

8

6

REQUIRED

MANDATORY

MISRA C 2012/23 AMD1

Supported Not Supported

120

94

0

187

RULES

RECOMMENDATION

SEI CERT C

Supported Not Supported

163ALL

SEI CERT C++

Supported Not Supported

5

41

DECIDABLE

OTHERS

ISO 17961

Supported Not Supported

100%

100%100%

100%

CWE updates yearly and have weakness for other language.Only 658/659 are rules for C/C++.

94%

93%76

81

6

5

CW E 658

CW E 659

CWE V4.12

Supported Not Supported

3232

Polyspace覆盖常见缺陷的检测

3333

以及信息安全类缺陷

34

编码安全规范、漏洞检查十分必要，但不够

满足编码规范 != 无漏洞 违反编码规范 != 有漏洞

Valid mixing of different data types → No vulnerability

Okay to violate CERT/MISRA/…

Proof

Certainty only

through formal proof

(„sound formal verification“)

Inconsistent arguments to memmove → DoS!

Not checked by CERT/MISRA/…

FreeRTOS

CVE-2018-

16601

CVSS

8.1

3535

高级SAST软件常见应用示例

编码规范和最佳实践

▪ CERT C(++) – Secure coding standard

▪ CWE – Common Weaknesses

▪ AUTOSAR-C++ & MISRA guidelines

▪ Taint Analysis, Persistence Analysis

▪ Common Vulnerability , defects

鲁棒性分析

▪ Works with all inputs? Always?

▪ Works on target processor?

– Floating point errors? Soft float?

– Interrupts & race conditions?

– Stack size? Memory leaks?

考虑所有输入和所有程序状态

36

nissan-logo

188962

我们的一部分客户
Used since 1999

▪ Aerospace and defense

▪ Automotive

▪ Industrial automation and machinery

▪ Railway transportation

▪ Consumer electronics

▪ Medical devices

mailto:Patrick.Munier@Mathworks.fr?successURL=/homepage.jsp&failureURL=/homepage.jsp&action=1
mailto:Patrick.Munier@Mathworks.fr?successURL=/homepage.jsp&failureURL=/homepage.jsp&action=1

37

总结

▪ Polyspace具备完整的静态分析能力

▪ 形式化方法搞定深层次的运行时错误

▪ 集成到开发、评审和持续集成中，高效低成本的提高软件质量

▪ Polyspace支持任何等级的功能安全和信息安全认证

38

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be

trademarks or registered trademarks of their respective holders.

感谢聆听！

	Slide 0
	Slide 1: 引子
	Slide 2: 引子
	Slide 3: 引子
	Slide 4: 这段代码呢？
	Slide 5: 内容提纲
	Slide 6: 高可靠性的敌人：运行时错误
	Slide 7: 爱国者防空导弹 “拦截失败，误伤自军”
	Slide 8
	Slide 9: 传统测试方法在应对关键运行时错误问题上能力不足
	Slide 10: Polyspace 产品家族
	Slide 11: 完整的静态解决方案
	Slide 12: 抽象解释法的形式化
	Slide 13: 使用 Polyspace Code Prover 证明代码安全无虞
	Slide 14: 如何衡量软件内部质量
	Slide 15: Code Prover 有何独到之处？
	Slide 16: 应用 polyspace 到开发流程
	Slide 17
	Slide 18: 编码时即检测和修复缺陷
	Slide 19: 编码时即检测和修复缺陷
	Slide 20: 使用桌面版扩大分析
	Slide 21: 快速定位根本原因
	Slide 22: 生成验证Bug Finder检查项的测试用例
	Slide 23: 生成验证Bug Finder检查项的测试用例
	Slide 24: 形式化交付安全的单元软件
	Slide 25: 数据流和多任务共享变量访问的证明
	Slide 26: 推送前自动分析 以 GitLab 为例
	Slide 27: 集成Polyspace到您的CI工作流中
	Slide 28: IEC 61508 Part 3 – Polyspace Bug Finder Supports…
	Slide 29: IEC 61508 Part 3 – Polyspace Code Prover Adds…
	Slide 30: 产品开发阶段的需求（ISO 21434）
	Slide 31: Polyspace 支持信息安全编码标准 Update to 2024b
	Slide 32: Polyspace覆盖常见缺陷的检测
	Slide 33: 以及信息安全类缺陷
	Slide 34: 编码安全规范、漏洞检查十分必要，但不够
	Slide 35: 高级SAST软件常见应用示例
	Slide 36: 我们的一部分客户 Used since 1999
	Slide 37: 总结
	Slide 38

