A MathWorks[®]

Automatically Convert MATLAB code to C code

Generate readable and portable C code from your MATLAB algorithms

Daryl Ning Applications Engineer

MathWorks Australia Level 5, Tower 1 495 Victoria Ave CHATSWOOD NSW 2067

© 2014 The MathWorks, Inc.

Example: Euclidean distance measure

euc	lidea	in.m × +	
1	-	<pre>function [y,idx,distance] = euclidean(x,codeb</pre>	ook) %#codegen
2		% Initialize minimum distance as first element	t of codebook
3 —		idx=1;	
4 -		distance=norm(x-codebook(:,1));	
5			
6		* Find the vector in codebook with minimum di	stance to x
7 -	[-	for index=2:size(codebook_2)	
8 -		d=norm(x-codebook(: index)):	
0_	Г	if d < distance	<pre>void euclidean(const float x[20], const float codebook[2000], float y[20]</pre>
9			double *idx, float *distance)
10 -		distance=d;	float b_x[20];
11 -		<pre>idx=index;</pre>	int iO;
12 -		- end	<pre>int b_index; float d;</pre>
13 -		end	*idx = 1.0;
14			for $(i0 = 0; i0 < 20; i0++)$ {
15		% Output the minimum distance vector	<pre>b_x[10] = x[10] = Codeboox[10]; }</pre>
16 -		y=codebook(:,idx);	
			*distance = norm(b_x);
			/* Find the vector in codebook with minimum distance to x */
			<pre>for (b_index = 0; b_index < 99; b_index++) {</pre>
			for $(10 = 0; 10 < 20; 10++)$ { b x[i0] = x[i0] - codebook[i0 + 20 * (b index + 1)];
			}
		MATLAB Coder	$a = norm(b_x);$ if $(d < *distance)$ {
		WITTET D COUCT	*distance = d;
			<pre>*idx = 2.0 + (double)b_index;</pre>
			/* Output the minimum distance vector */
			<pre>memcpy(&y[0], &codebook[20 * ((int)*idx - 1)], 20U * sizeof(float));</pre>
			1

iSonea Develops Mobile App and Server Software for Wheeze Detection and Asthma Management

Challenge

Develop and implement an acoustic respiratory monitoring system for wheeze detection and asthma management

Solution

Develop algorithms for detecting wheeze and ambient noise in MATLAB, and use MATLAB Coder to generate code from the algorithms for mobile devices and a web server

Results

- Manual coding effort reduced
- Algorithm development iterations accelerated
- Code maintenance overhead reduced

The AirSonea device, which connects to an asthma patient's smartphone and communicates with wheeze analysis algorithms on iSonea's server.

"MATLAB enables us to rapidly develop, debug, and test soundprocessing algorithms, and MATLAB Coder simplifies the process of implementing those algorithms in C. There's no other environment or programming language that we could use to produce similar results in the same amount of time."

> Mark Mulvey iSonea

Baker Hughes Oilfield Services Company

- Deployed a real time algorithm that optimizes the drilling process and lowers the cost of operations
- "This workflow shortened the development process by eliminating the need for maintaining and testing the same algorithm in two languages." Dr. Christian Hansen, Baker Hughes

 <u>http://www.edn.com/design/systems-design/4421993/1/Reducing-</u> risk-in-implementing-technical-computing-algorithms

Agenda

Motivation

- Why translate MATLAB to C?
- Challenges of manual translation
- Using MATLAB Coder
 - Three-step workflow for generating code
- Use cases
 - Integrate algorithms with external C code
 - Accelerate through MEX
 - Prototype by generating EXE
 - Integration with Simulink and Embedded Coder
 - Other deployment solutions
- Summary

Why Engineers Translate MATLAB to C

Implement C code on processors or hand off to software engineers

Integrate MATLAB algorithms with existing C environment using source code and static/dynamic libraries

exe.	Prototype MATLAB algorithms on desktops as
\bigcirc	standalone executables

Accelerate user-written MATLAB algorithms

Algorithm Development Process

Technical Computing Workflow

Automate

Introductory Demo c = a*b

- MATLAB Coder app
- Autodefine input type
- Code generation report

📣 M	MATLAB Coder: C/C++ Static Library							
<u>F</u> ile	<u>E</u> dit	Project	De <u>b</u> ug	<u>W</u> indow	<u>H</u> elp	Ľ		
🗟 C:	Work	SimpleD	emo∖myN	/ult.prj		▼ 🛗 🍿 ©+		
Ove	rview	Build						
Entr	y-Point F	ïles				0		
	🖄 myN	/ult.m						
	а			double(3 x	4)			
	b			double(4 x	5)			
					Add files	Autodefine types		
Fixe	d-Point (Conversion				?		
Ke	ep orig	jinal type:	S			•		
Glob	bal Varial	bles				?		
If y and mu	If you use global variables in your MATLAB algorithm, add a global type definition and initial value for each before building the project. If you do not do this, you must create a global variable in the workspace.							
						Add global		

- Separate functional and implementation specification
 - Leads to multiple implementations that are inconsistent
 - Hard to modify requirements during development
 - Difficult to keep reference MATLAB code and C code in sync
- Manual coding errors
- Time-consuming and expensive process

logical

Challenges with Manual Translation Implementation Considerations

double foo(double b, double c) return b*c;

```
const double c[30], double a[18])
int i0, i1, i2;
```

```
for (i0 = 0; i0 < 3; i0++) {
 for (i1 = 0; i1 < 6; i1++) {
  a[i0 + 3 * i1] = 0.0;
  for (i2 = 0; i2 < 5; i2++) {
    a[i0 + 3 * i1] += b[i0 + 3 * i2] * c[i2 + 5 * i1];
```


Challenges with Manual Translation

Implementation Considerations

- Polymorphism
- Memory allocation
- Processing matrices and arrays
- Fixed-point data types

Automatic Translation of MATLAB to C

With MATLAB Coder, design engineers can:

- Maintain one design in MATLAB
- Design faster and get to C quickly
- Test more systematically and frequently
- Spend more time improving algorithms in MATLAB

Agenda

- Motivation
 - Why translate MATLAB to C?
 - Challenges of manual translation
- Using MATLAB Coder
 - Three-step workflow for generating code
- Use cases
 - Integrate algorithms with external C code
 - Accelerate through MEX
 - Prototype by generating EXE
 - Integration with Simulink and Embedded Coder
 - Other deployment solutions
- Summary

Using MATLAB Coder: Three-Step Workflow

Prepare your MATLAB algorithm for code generation

- Make implementation choices
- Use supported language features

Test if your MATLAB code is compliant

- Validate that MATLAB program generates code
- Iterate your MATLAB code to optimize (speed, memory, etc.)
- Verify generated code against testbench using MEX

Generate source code or MEX for final use

Implement as source, executable, or library

Example: Newton/Raphson Algorithm

Preparing your MATLAB code

- Code generation readiness tool
- Pre-allocate
- Identify more efficient constructs
- Select code generation options

```
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.
```

```
\Box function [x,h] = newtonSearchAlgorithm(b,n,tol)
□ % Given, "a", this function finds the nth root of a
 -% number by finding where: x^n-a=0.
     notDone = 1:
     aNew = 0; %Refined Guess Initialization
          = 1: %Initial Guess
     cnt
          = 0:
    h(1)=a:
    while notDone
       cnt = cnt+1;
       [curVal,slope] = f_and_df(a,b,n); %square
       vint = curVal-slope*a;
       aNew = -yint/slope; %The new guess
       h(cnt)=aNew;
       if (abs(aNew-a) < tol) %Break if it's converged
          notDone = 0;
       elseif cnt>49 %after 50 iterations, stop
          notDone = 0;
          aNew = 0:
```

>> Demo

MATLAB Language Support for Code Generation

Supported MATLAB Language Features and Functions

Broad set of language features and functions/system objects supported for code generation

Matrices and Arrays	Data Types	Programming Constructs	Functions
 Matrix operations N-dimensional arrays Subscripting Frames Persistent variables Global variables 	 Complex numbers Integer math Double/single-precision Fixed-point arithmetic Characters Structures Numeric class Variable-sized data MATLAB Class (MCOS) System objects 	 Arithmetic, relational, and logical operators Program control (if, for, while, switch) 	 MATLAB functions and subfunctions Variable-length argument lists Function handles Supported algorithms More than 700 MATLAB operators and functions More than 300 System objects for: Signal processing Communications Computer vision

Supported Functions & System objects

- Image Processing Toolbox
- Phased Array System Toolbox
- Signal Processing Toolbox
- Statistics Toolbox
- Optimisation Toolbox

Code Generation Support for Statistics Toolbox functions

Use 100+ Statistics Toolbox functions

betacdf	evstat	geornd	kurtosis	nbinrnd	pdf	tstat
betainv	expcdf	geostat	logncdf	nbinstat	poisscdf	unidcdf
betapdf	expinv	gevcdf	logninv	ncfcdf	poissinv	unidinv
betarnd	exppdf	gevinv	lognpdf	ncfinv	poisspdf	unidpdf
betastat	exprnd	gevpdf	lognrnd	ncfpdf	poissrnd	unidrnd
binocdf	expstat	gevrnd	lognstat	ncfrnd	poisstat	unidstat
binoinv	fcdf	gevstat	mad	ncfstat	prctile	unifcdf
binopdf	finv	gpcdf	mnpdf	nctcdf	quantile	unifinv
binornd	fpdf	gpinv	moment	nctinv	randg	unifpdf
binostat	frnd	gppdf	nancov	nctpdf	random	unifrnd
cdf	fstat	gprnd	nanmax	nctrnd	raylcdf	unifstat
cdf chi2cdf	fstat gamcdf	gprnd gpstat	nanmax nanmean	nctrnd nctstat	raylcdf raylinv	unifstat wblcdf
cdf chi2cdf chi2inv	fstat gamcdf gaminv	gprnd gpstat harmmean	nanmax nanmean nanmedian	nctrnd nctstat ncx2cdf	raylcdf raylinv raylpdf	unifstat wblcdf wblinv
cdf chi2cdf chi2inv chi2pdf	fstat gamcdf gaminv gampdf	gprnd gpstat harmmean hygecdf	nanmax nanmean nanmedian nanmin	nctrnd nctstat ncx2cdf ncx2rnd	raylcdf raylinv raylpdf raylrnd	unifstat wblcdf wblinv wblpdf
cdf chi2cdf chi2inv chi2pdf chi2rnd	fstat gamcdf gaminv gampdf gamrnd	gprnd gpstat harmmean hygecdf hygeinv	nanmax nanmean nanmedian nanmin nanstd	nctrnd nctstat ncx2cdf ncx2rnd ncx2stat	raylcdf raylinv raylpdf raylrnd raylstat	unifstat wblcdf wblinv wblpdf wblrnd
cdf chi2cdf chi2inv chi2pdf chi2rnd chi2stat	fstat gamcdf gaminv gampdf gamrnd gamstat	gprnd gpstat harmmean hygecdf hygeinv hygepdf	nanmax nanmean nanmedian nanmin nanstd nansum	nctrnd nctstat ncx2cdf ncx2rnd ncx2stat normcdf	raylcdf raylinv raylpdf raylrnd raylstat skewness	unifstat wblcdf wblinv wblpdf wblrnd wblstat
cdf chi2cdf chi2inv chi2pdf chi2rnd chi2stat evcdf	fstat gamcdf gaminv gampdf gamrnd gamstat geocdf	gprnd gpstat harmmean hygecdf hygeinv hygepdf hygernd	nanmax nanmean nanmedian nanmin nanstd nansum nanvar	nctrnd nctstat ncx2cdf ncx2rnd ncx2stat normcdf norminv	raylcdf raylinv raylpdf raylrnd raylstat skewness tcdf	unifstat wblcdf wblinv wblpdf wblrnd wblstat zscore
cdf chi2cdf chi2inv chi2pdf chi2rnd chi2stat evcdf evinv	fstat gamcdf gaminv gampdf gamrnd gamstat geocdf geoinv	gprnd gpstat harmmean hygecdf hygeinv hygepdf hygernd hygestat	nanmax nanmean nanmedian nanmin nanstd nansum nanvar nbincdf	nctrnd nctstat ncx2cdf ncx2rnd ncx2stat normcdf norminv normpdf	raylcdf raylinv raylpdf raylrnd raylstat skewness tcdf tinv	unifstat wblcdf wblinv wblpdf wblrnd wblstat zscore
cdf chi2cdf chi2inv chi2pdf chi2rnd chi2stat evcdf evinv evpdf	fstat gamcdf gaminv gampdf gamrnd gamstat geocdf geoinv geomean	gprnd gpstat harmmean hygecdf hygeinv hygepdf hygernd hygestat icdf	nanmax nanmean nanmedian nanmin nanstd nansum nanvar nbincdf nbininv	nctrnd nctstat ncx2cdf ncx2rnd ncx2stat normcdf norminv normpdf normrnd	raylcdf raylinv raylpdf raylrnd raylstat skewness tcdf tinv tpdf	unifstat wblcdf wblinv wblpdf wblrnd wblstat zscore

Code Generation Support for Phased Array System Toolbox

Use 80+ functions

aictest albersheim ambqfun aperture2gain az2broadside azel2phitheta azel2phithetap at azel2uv azel2uvpat azelaxes beat2range billingsleyicm broadside2az cart2sphvec cbfweights circpol2pol dechirp delayseq depressionang

dop2speed dopsteeringvec effearthradius espritdoa fspl gain2aperture global2localcoord grazingang horizonrange lcmvweights local2globalcoord mdltest mvdrweights noisepow npwqnthresh phitheta2azel phitheta2azelpat phitheta2uv phitheta2uvpat physconst

pol2circpol polellip polloss polratio polsignature pulsint radareqpow radaregrng radareqsnr radarvcd radialspeed range2beat range2bw range2time rangeangle rdcoupling rocpfa rocsnr rootmusicdoa rotx

roty rotz sensorcov sensorsig shnidman speed2dop sph2cartvec spsmooth steervec stokes stretchfreq2rnq surfacegamma surfclutterrcs systemp time2range unigrid uv2azel uv2azelpat uv2phitheta uv2phithetapat

val2ind

Code Generation Support for Phased Array System Toolbox

Use 50+ System objects

phased.CosineAntennaElement phased.CrossedDipoleAntennaElement phased.CustomAntennaElement phased.CustomMicrophoneElement phased.IsotropicAntennaElementIsotropic phased.OmnidirectionalMicrophoneElement phased.ShortDipoleAntennaElement phased.ULA phased.URA phased.ConformalArray phased.PartitionedArray phased.ReplicatedSubarray phased.SteeringVector phased.ArrayGain phased.ArrayResponse phased.ElementDelay phased.Collector phased.Radiator phased.WidebandCollector phased.LinearFMWaveformLinear

phased.PhaseCodedWaveform phased.RectangularWaveform phased.SteppedFMWaveform phased.FMCWWaveform phased.MatchedFilter phased.Transmitter phased.ReceiverPreamp phased.PhaseShiftBeamformer phased.LCMVBeamformer phased.MVDRBeamformer phased.SubbandPhaseShiftBeamformer phased.FrostBeamformer phased.TimeDelayBeamformer phased.TimeDelayLCMVBeamformer phased.SteeringVector phased.SumDifferenceMonopulseTracker phased.SumDifferenceMonopulseTracker2D phased.BeamscanEstimator phased.BeamscanEstimator2D phased.MVDREstimator

phased.MVDREstimator2D phased.RootMUSICEstimator phased.RootWSFEstimator phased.ESPRITEstimator phased.BeamspaceESPRITEstimator phased.STAPSMIBeamformer phased.DPCACanceller phased.ADPCACanceller phased.AngleDopplerResponse phased.CFARDetector phased.MatchedFilter phased.RangeDopplerResponse phased.StretchProcessor phased.TimeVaryingGain phased.FreeSpace phased.RadarTarget phased.ConstantGammaClutter phased.BarrageJammer phased.Platform

Agenda

- Motivation
 - Why translate MATLAB to C?
 - Challenges of manual translation
- Using MATLAB Coder
 - Three-step workflow for generating code
- Use cases
 - Integrate algorithms with external C code
 - Accelerate through MEX
 - Prototype by generating EXE
 - Integration with Simulink and Embedded Coder
 - Other deployment solutions
- Summary

MATLAB Coder Use Cases

Example: Code Integration *with Visual Studio Parent Project*

Integrate algorithms with custom software

MATLAB

Example: External Code Integration *coder.ceval*

Integrate third-party libraries with generated code

- Uses coder.target to distinguish between MATLAB simulation and code generation
- Integrates custom C code to replace automatically generated C code
- Just need to specify additional files and include path

```
\Box function y = custom conv ceval(x,h)
                                        %#codegen
 % This example uses the coder.target and coder.ceval functions to
 % explicitly define what should be run during simulation, and what should
 % be used when generating C code.
 % intialise size and type of output
 y = zeros(length(x)+length(h)-1,1);
if coder.target('MATLAB')
   % Executing in MATLAB
   y = conv(x,h);
 else
   % Call to C function 'custom conv.c' using coder.ceval
   coder.ceval('custom conv', coder.rref(x), uint32(length(x)), ...
       coder.rref(h), uint32(length(h)), ...
       coder.wref(y));
 end
```



```
void custom_conv_ceval(const double x[10], const double h[3], double y[12])
{
    /* intialise size and type of output */
    /* Call to C function 'custom_conv.c' using coder.ceval */
    custom_conv(x, 10U, h, 3U, y);
}
```


External Code Integration using

coder.ExternalDependency

Integrate third-party libraries with generated code

- Encapsulates API to an external library, object file, or C/C++ source code
- Integrates with external libraries without user intervention
- Automatically adds necessary compiler and linker flags and objects

Acceleration Strategies

- Better algorithms
 Matrix inversion vs. QR or SVD
 - Different approaches to solving the same problem
- More efficient implementation Hand-coded vs. optimized library (e.g. BLAS and LAPACK)
 - Different optimization of the same algorithm
- More computational resources
 Single-threaded vs. multithreaded (multithreaded BLAS)
 - Leveraging additional processors, cores, GPUs, FPGAs, etc.

Accelerating Algorithm Execution

Example: Newton-Raphson

Accelerate algorithm execution

```
1
     - %% Script to compare execution time of MATLAB code to generated MEX code
      liter = 1000;
 2 -
 3
     - %% Time MATLAB code
 4
 5 -
       elTime = zeros(iter,1);
     for i = 1:iter
 6 -
 7 -
           tic
 8 -
           nrt(1e8,12,1e-9);
9 -
          t = toc;
10 -
           elTime(i) = t;
11 -
       end
12 -
       matTime = mean(elTime);
13 -
       disp(['Mean MATLAB time is: ' num2str(matTime) ' seconds']);
                                                                    Command Window
14
15
     - %% Time MEX Code
                                                                        >> speedTest
       elTime = zeros(iter,1);
16 -
17 -
     for i = 1:iter
                                                                        Mean MATLAB time is: 0.00033502 seconds
18 -
           tic
                                                                        Mean MEX time is: 2.8008e-05 seconds
19 -
           nrt mex(1e8,12,1e-9);
                                                                        Speed up factor is: 11.9615X
20 -
          t = toc;
21 -
           elTime(i) = t;
                                                                     f_x >>
22 -
       end
23 -
       mexTime = mean(elTime);
24 -
       disp(['Mean MEX time is: ' num2str(mexTime) ' seconds']);
25
26
      - %% Speed Up Factor
27 -
       speedUp = matTime/mexTime;
28 -
       disp(['Speed up factor is: ' num2str(speedUp) 'X']);
29
```

>> Demo

Acceleration Using MEX

- Speed-up factor will vary
- When you **may** see a speedup:
 - Often for communications and signal processing
 - Always for fixed point
 - Likely for loops with states or when vectorisation isn't possible
- When you **may not** see a speedup:
 - MATLAB implicitly multithreads computation.
 - Built-in functions call IPP or BLAS libraries.

Multicore parfor Support in MEX Functions

Run MATLAB faster by generating MEX functions that execute on multiple cores

- Relies on OpenMP technology to parallelize parfor loops
- OpenMP supported by Microsoft, Intel, and GCC C compilers

2	Editor - C:\MATLAB\test_parfor.m					
t	est_pa	for.m ×				
1	E	<pre>function a = test_parfor %#codegen</pre>				
2		size=80;				
3	a=ones(size,256);					
4	<pre>- r=rand(size,256);</pre>					
5	- 6	parfor i=1:size				
6		a(i,:)=real(fft(r(i)));				
7	—	end				
Co	Command Window					
	>> codegen test_parfor					
	<pre>>> tic; test_parfor_mex; toc;</pre>					
	Ela	psed time is 0.162044 seconds.				
fx	>>					

Multicore parfor Support

for Standalone Code Generation

Use parfor to generate parallel C/C++ code using OpenMP

Requires C/C++ compiler supporting OpenMP

```
>> coderdemo contrast enhancer
```


Example: Standalone Executable

Video Stabilisation

Prototype algorithms on PCs

- Need to provide main.c for entry point
- Use System objects from Computer Vision System Toolbox to stream, process, and display video

Working with Embedded Coder

- Advanced support for MATLAB Coder, including:
- Speed Project Settings Memory 漸 = r-Debugging Paths Code Appearance Speed Memory Code appearance Show code generation readiness status in project Hardware-specific optimization Show verbose compiler output Always create a code generation report Static code metrics Project Settings Code replacements = 漸 Automatically launch a report if one is generated r-7 Paths Speed Memory Code Appearance Debugging Custom Code Hardware 2. Global Variables [hide] Code replacement library: C89/C90 (ANSI) Custom Global variables defined in the generated code. 289/C90 (ANSI) Hardware Settings C99 (ISO) Global Variable Size (bytes) Test hardware is the sarGNU99 (GNU) myglobal 240 AUTOSAR 4.0 Total 240 Setting GCC ARM9 Haldware GCC ARM9E Device Vendor GCC ARM10 Device Type omputer ▲ Sizes GCC ARM11

Working with Embedded Coder

Software-in-the-Loop Verification

Verify numerical behavior of generated source code through software-in-the-loop testing

- Reuse MATLAB tests to exercise standalone source code compiled for host computer
- Integrate SIL verification with the existing Project verification tool and commandline utility coder.runTest
- Step through generated code in Microsoft Visual Studio debugger during SIL testing when using coder.runTest

Working with Simulink

MATLAB Function block in Simulink

Other Desktop Deployment Options

Other Deployment Options MATLAB Compiler

- Share applications
 - Creates desktop or web software components
 - Supports full MATLAB language and most toolboxes
 - Requires MATLAB
 Compiler Runtime
 - Free run-time library
 - Royalty-free deployment

Choosing the Right Deployment Solution *MATLAB Coder or MATLAB Compiler*

	.c	MATLAB Compiler Runtime (MCR)
	MATLAB Coder	MATLAB Compiler
Output	Portable and readable C source code	Executable or software component/library
MATLAB support	Subset of language Some toolboxes	Full language Most toolboxes Graphics
Runtime requirement	None	MATLAB Compiler Runtime
License model	Royalty-free	Royalty-free

VivaQuant Accelerates Development and Validation of Embedded Device for Ambulatory ECG Sensing

Challenge

Design and implement an embedded system for extracting accurate information from noisy electrocardiogram signals

Solution

Use MATLAB to develop an algorithm for removing in-band noise, and use Fixed-Point Designer and MATLAB Coder to implement it on an ARM Cortex-M series processor

Results

- Development accelerated by 300%
- Power and memory consumption minimized
- Rigorous testing enabled

ECG snippet before and after processing with VivaQuant's embedded in-band noise removal algorithm.

"MATLAB, MATLAB Coder, and Fixed-Point Designer enabled our small team to develop a complex real-time signal processing algorithm, optimize it to reduce power and memory requirements, accelerate embedded code implementation, and perform the rigorous testing required for medical device validation."

> Marina Brockway VivaQuant

Agenda

- Motivation
 - Why translate MATLAB to C?
 - Challenges of manual translation
- Using MATLAB Coder
 - Three-step workflow for generating code
- Use cases
 - Integrate algorithms with external C code
 - Accelerate through MEX
 - Prototype by generating EXE
 - Integration with Simulink and Embedded Coder
 - Other deployment solutions

Summary

Summary

Automate

Automatic C Code Generation

Accelerates Development

Takeaways

- MATLAB provides a direct path to C code
 - Both floating-point and fixed-point
- Suitable for applications where
 - Source code is required
 - Small memory footprint is required
- Automatic Code Generation
 - accelerates design iterations
 - reduces verification effort

More Information

- To learn more, visit the product page: <u>mathworks.com/products/matlab-coder</u>
- To request a trial license:
 - Talk to your MathWorks account manager to request a trial license and set up a guided evaluation with an application engineer
- Contact us
 - info@mathworks.com.au
 - 02 8669 4700

Training courses - Sydney

Course Name	Course Code	Start Date	End Date	City
MATLAB Fundamentals	MLBE	5-Aug-14	7-Aug-14	Sydney
Stateflow for Logic Driven System Modeling	SLSF	14-Aug-14	15-Aug-14	Sydney
Embedded Coder for Production Code Generation	SLEC	16-Sep-14	18-Sep-14	Sydney
MATLAB Fundamentals	MLBE	30-Sep-14	2-Oct-14	Sydney
MATLAB Programming Techniques	MLPR	14-Oct-14	15-Oct-14	Sydney
Physical Modeling of Multidomain Systems with Simscape	SLPM-S	16-Oct-14	16-Oct-14	Sydney
Statistical Methods in MATLAB	MLST	11-Nov-14	12-Nov-14	Sydney
Image Processing with MATLAB	MLIP	13-Nov-14	14-Nov-14	Sydney

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

Training courses - Adelaide

Course Name	Course Code	Start Date	End Date	City
Simulink for System and Algorithm Modeling	SLBE	21-Aug-14	22-Aug-14	Adelaide
Image Processing with MATLAB	MLIP	9-Sep-14	10-Sep-14	Adelaide
MATLAB Fundamentals	MLBE	4-Nov-14	6-Nov-14	Adelaide
Parallel Computing with MATLAB	MLPC	18-Nov-14	19-Nov-14	Adelaide

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

Training courses - Brisbane

Course Name	Course Code	Start Date	End Date	City
Simulink for System and Algorithm Modeling	SLBE	22-Oct-14	23-Oct-14	Brisbane
Optimization Techniques in MATLAB	MLOP	24-Oct-14	24-Oct-14	Brisbane
MATLAB Fundamentals	MLBE	11-Nov-14	13-Nov-14	Brisbane

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

Training courses - Melbourne

Course Name	Course Code	Start Date	End Date	City
MATLAB Fundamentals	MLBE	19-Aug-14	21-Aug-14	Melbourne
Building Interactive Applications in MATLAB	MLGU	22-Aug-14	22-Aug-14	Melbourne
Physical Modeling of Multidomain Systems with Simscape	SLMPM-S	22-Sep-14	22-Sep-14	Melbourne
MATLAB Programming Techniques	MLPR	23-Sep-14	24-Sep-14	Melbourne
Statistical Methods in MATLAB	MLST	25-Sep-14	26-Sep-14	Melbourne
MATLAB Fundamentals	MLBE	14-Oct-14	16-Oct-14	Melbourne
Optimization Techniques in MATLAB	MLOP	17-Oct-14	17-Oct-14	Melbourne
Parallel Computing with MATLAB	MLPC	28-Oct-14	29-Oct-14	Melbourne
Signal Processing with MATLAB	MLSG	30-Oct-14	31-Oct-14	Melbourne
Signal Processing with Simulink	SLBE-G	18-Nov-14	20-Nov-14	Melbourne

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

Training courses - Perth

Course Name	Course Code	Start Date	End Date	City
Statistical Methods in MATLAB	MLST	26-Aug-14	27-Aug-14	Perth
Simulink for System and Algorithm Modeling	SLBE	28-Aug-14	29-Aug-14	Perth
MATLAB Fundamentals	MLBE	23-Sep-14	25-Sep-14	Perth

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

Training courses - New Zealand

Course Name	Course Code	Start Date	End Date	City
Signal Processing with Simulink	SLBE-G	3-Sep-14	5-Sep-14	Christchurch
Statistical Methods in MATLAB	MLST	7-Oct-14	8-Oct-14	Wellington

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

Training courses - OnLine

Course Name	Course Code	Start Date	End Date	City
MATLAB Programming Techniques	MLPR	12-Aug-14	13-Aug-14	e-learning
MATLAB Fundamentals	MLBE	2-Sep-14	4-Sep-14	e-learning
Simulink for System and Algorithm Modeling	SLBE	11-Sep-14	12-Sep-14	e-learning
MATLAB Fundamentals	MLBE	9-Dec-14	11-Dec-14	e-learning

© 2014 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See <u>www.mathworks.com/trademarks</u> for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

