Exploring computer vision frontiers with MATLAB

Jamie Heather
Compac Technologies
Company overview

- **Global leader** in development, manufacture & supply of smart produce handling systems
- Reputation for **innovation** and leading edge technology
- Established in **1984** by Hamish Kennedy
- Now a global company, **400+** staff
Compac solutions

From single lane sorters to fully integrated turnkeys

1 lane: 2.5 – 4 ton/hour

10 lanes: 30-50 ton/hour

40 lanes: 100-160 ton/hour
Industry leading R&D

• R&D comprises approximately 20% of overall Compac staff with a total of 72 employees

• 20% Government funding for the next 5 years through the Callaghan Innovation R&D Growth Grant

• Department is expected to grow by 50% in the next 5 years and continue growing

• Vision Team mix of software / algorithm developers, test engineers, mechanical designers and technicians
Compac vision system

- Automated inspection system
- Real-time image processing
 - Up to 12 fruit per second, per lane
 - 70 images per fruit
 - Multiple cameras & wavebands
 - 100% fruit surface coverage
- Powerful grading capabilities
 - Size, shape
 - Colour, texture
 - Surface blemishes
How we use MATLAB

• Understanding our product!

• Algorithm development
 – Blemish grading
 – 3D reconstruction

• Data analysis / visualisation
 – Fruit classification tool

• Prototyping
 – Automatic camera calibration

• Rapid tool development
 – Mirror bend test
Understanding our product

- Our vision software is... complicated
 - Real-time, complex system
 - Coded in C++
 - 2 decades of development
 - Numerous developers
 - Lots of legacy code
 - Complex architectures
Understanding our product

- MATLAB is enabling us to ‘pull-apart’ our software and analyse / improve individual components
 - Many parts of the vision processing chain have now been replicated in MATLAB
 - Able to process offline (using recorded data), find issues / limitations, and create new solutions
 - Much quicker and more flexible than trying to work in C++ directly
Testing mirror flatness

- **Problem:**
 - Develop production tool for checking mirrors for distortion

- **Solution:**
 - GUI for loading images, processing & displaying results
 - Compiled as executable
 - Project completed in 4 hours!
Reasons for using MATLAB

- Industry standard
- Fast learning curve
- Rapid results
- Powerful toolboxes
- Community support
 - File Exchange
- Regularly updated
 - 2 releases / year

Useful MATLAB toolboxes for computer vision:
- Image Processing
- Computer Vision System
- Image Acquisition
- Wavelet
- Statistics
- Neural Network
- Optimization
- Parallel Computing
MATLAB File Exchange

- Great online resource
- Free downloads
- User rated submissions
Interfacing with C/C++

- Quick and easy to compile DLLs and call from MATLAB
- Useful for unit testing code modules
- Allows incremental / modular progression of prototypes from MATLAB to C/C++
MATLAB Compiler

• Very easy to use

• Generates deployable executables
 – No license restrictions

• Some limitations
 – Requires MCR library installation
 – Slow to initialize (10 seconds)

• Fantastic for rapidly deploying standalone R&D tools
Conclusions

• MATLAB is enabling Compac to accelerate its R&D programme
 – Rapid algorithm development
 – Data analysis / visualisation
 – Rapid prototyping
 – Application development

• Now our standard tool for computer vision research