MATLAB TOUR 2017
Machine Learning y Deep Learning con MATLAB

Lucas García
Deep Learning is Everywhere

&

MATLAB framework makes Deep Learning Easy and Accessible
Deep Learning is Everywhere

Computer Vision
- Pedestrian and traffic sign detection
- Landmark identification
- Scene recognition
- Medical diagnosis and drug discovery

Text and Signal Processing
- Speech Recognition
- Speech & Text Translation

Robotics & Controls
and many more…

MATLAB TOUR 2017
Deep Learning Use Case
e.g. Automated Driving
What is Deep Learning?
Deep Learning is a Subset of Machine Learning
e.g. Google Captioning Project

Machine learning is the science of getting computers to act without being explicitly programmed.

Deep learning algorithms can learn tasks directly from data, eliminating the need for manual feature selection.

http://googleresearch.blogspot.com/2014/11/a-picture-is-worth-thousand-coherent.html

MATLAB TOUR 2017
Shallow Machine Learning Workflow

Train: Iterate until you find the best model

Predict: Integrate trained models into applications

LOAD DATA → PREPROCESS DATA → SUPERVISED LEARNING → MODEL → PREDICTION

- LOAD DATA
- PREPROCESS DATA: Cropping, Contrast Adjustment, Feature Extraction, Feature Analysis
- SUPERVISED LEARNING: CLASSIFICATION, REGRESSION
- MODEL
- PREDICTION: NEW DATA

MATLAB TOUR 2017
Deep learning is a type of **machine learning** that learns tasks *directly* from data.
What is Deep Learning?

End-to-End Learning

Data

Task

Cat

Dog

Bird

Car

Learned Features...
Why is Deep Learning so popular now?

![Bar chart showing error rates from 2010 to 2015 for machine learning and deep learning.]

Source: ILSVRC Top-5 Error on ImageNet
Deep Learning Enablers

1. Acceleration with GPU’s

2. Massive sets of labeled data

3. Availability of state of the art models from experts
MATLAB makes Deep Learning **Easy and Accessible**

Learn about new MATLAB capabilities to

- Handle and label large sets of images
- Accelerate deep learning with GPUs
- Visualize and debug deep neural networks
- Access and use models from experts

MATLAB TOUR 2017
Convolutional Neural Networks

- Train “deep” neural networks on structured data (e.g. images, signals, text)
- Implements Feature Learning: Eliminates need for “hand crafted” features
- Trained using GPUs for performance
Convolution Layer

- Core building block of a CNN
- Convolve the filters sliding them across the input, computing the dot product

- Intuition: learn filters that activate when they “see” some specific feature
Agenda

- Image classification using pre-trained network
- Training a Deep Neural Network from scratch
- Transfer learning to classify new objects
- Locate & classify objects in images and video
Agenda

- Image classification using pre-trained network
- Training a Deep Neural Network from scratch
- Transfer learning to classify new objects
- Locate & classify objects in images and video
Image classification using pre-trained network

```matlab
clear
camera = webcam(); % Connect to the camera

picture = camera.snapshot; % Take a picture

image(picture); % Show the picture
```

Deep Learning in 11 Lines of MATLAB Code
Image classification using pre-trained network
Agenda

- Image classification using pre-trained network
- Training a Deep Neural Network from scratch
- Transfer learning to classify new objects
- Locate & classify objects in images and video
Two Deep Learning Approaches

Approach 1: Train a Deep Neural Network from Scratch

Configure and train a CNN (convolutional neural network)
- Configure a network architecture to learn a specific task
- Gather a training set with massive amount of training data

Use when necessary:

<table>
<thead>
<tr>
<th>Training data</th>
<th>Thousands to millions of labeled images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>Compute-intensive (requires GPU)</td>
</tr>
<tr>
<td>Training Time</td>
<td>Days to weeks for real problems</td>
</tr>
<tr>
<td>Model accuracy</td>
<td>High (but can overfit to small datasets)</td>
</tr>
</tbody>
</table>
Demo: Classifying the CIFAR-10 dataset

Approach 1: Train a Deep Neural Network from Scratch

Objective: Train a Convolutional Neural Network to classify the CIFAR-10 dataset

Data:

<table>
<thead>
<tr>
<th>Input Data</th>
<th>Thousands of images of 10 different Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>AIRPLANE, AUTOMOBILE, BIRD, CAT, DEER, DOG, FROG, HORSE, SHIP, TRUCK</td>
</tr>
</tbody>
</table>

Approach:
- Import the data
- Define an architecture
- Train and test the CNN

Demo: Classifying the CIFAR-10 dataset

Approach 1: Train a Deep Neural Network from Scratch
Agenda

- Image classification using pre-trained network
- Training a Deep Neural Network from scratch
- Transfer learning to classify new objects
- Locate & classify objects in images and video
Why train a new model?

- Models from research do not work on your data
- Pre-trained model not available for your data
- Improve results by creating a model specific to your problem
Two Deep Learning Approaches

Approach 2: Fine-tune a pre-trained model (transfer learning)

CNN already trained on massive sets of data
- Trained model has robust learned representations
- Can then be fine-tuned for new data or task using small/medium-size datasets

<table>
<thead>
<tr>
<th>Training data</th>
<th>Hundreds to thousands of labeled images (small)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation</td>
<td>Moderate computation (GPU optional)</td>
</tr>
<tr>
<td>Training Time</td>
<td>Seconds to minutes</td>
</tr>
<tr>
<td>Model accuracy</td>
<td>Good, depends on the pre-trained CNN model</td>
</tr>
</tbody>
</table>
Why Perform Transfer Learning

- Requires less data and training time
- Reference models (like AlexNet, VGG-16, VGG-19) are great feature extractors
- Leverage best network types from top researchers
Demo: Classify Vehicles With Transfer Learning
Approach 2: Fine-tune a pre-trained model (transfer learning)

New Data

AlexNet

1000 Category Classifier

car →
suv →
pickup →
van →
truck →

5 Category Classifier
Demo: Classify Vehicles With Transfer Learning

Approach 2: Fine-tune a pre-trained model (transfer learning)
Agenda

- Image classification using pre-trained network
- Training a Deep Neural Network from scratch
- Transfer learning to classify new objects
- Locate & classify objects in images and video
Is Object Recognition/Classification Enough?

Car

Label for entire image

Car? SUV? Truck?
Object Detection – Locate and Classify Object
Goal: Create Object Detector to Locate Vehicles

Step 1: Label / Crop data
Step 2: Train detector
Step 3: Use detector
Label Images with MATLAB
Labeling Videos with MATLAB

Manually label regions of interest
Demo: Vehicle detection using Faster R-CNNs
MATLAB makes Deep Learning Easy and Accessible

Learn about new MATLAB capabilities to

- Handle and label large sets of images
- Accelerate deep learning with GPUs
- Visualize and debug deep neural networks
- Access and use models from experts

imageDS = imageDatastore(dir)
Easily manage large sets of images

Image Labeler

Video Labeler
MATLAB makes Deep Learning Easy and Accessible

Learn about new MATLAB capabilities to

- Handle and label large sets of images
- Accelerate deep learning with GPUs
- Visualize and debug deep neural networks
- Access and use models from experts

Training modes supported:

- Auto Select GPU
- Multi GPU (local)
- Multi GPU (cluster)

MATLAB TOUR 2017

Acceleration with Multiple GPUs
MATLAB makes Deep Learning **Easy** and **Accessible**

Learn about new MATLAB capabilities to

- Handle and label large sets of images
- Accelerate deep learning with GPUs
- Visualize and debug deep neural networks
- Access and use models from experts
MATLAB makes Deep Learning Easy and Accessible

Learn about new MATLAB capabilities to:

- Handle and label large sets of images
- Accelerate deep learning with GPUs
- Visualize and debug deep neural networks
- Access and use models from experts

Curated Set of Pretrained Models

Access Models with 1-line of MATLAB Code

```matlab
net1 = alexnet
net2 = vgg16
net3 = vgg19
```
MATLAB makes Deep Learning Easy and Accessible

Learn about new MATLAB capabilities to

- Handle and label large sets of images
- Accelerate deep learning with GPU’s
- Visualize and debug deep neural networks
- Access and use models from experts
Questions?