} MathWorks

C and C++ DevOps with GitLab,
Visual Studio Code,
and Polyspace

Matt Rhodes
Presented 4 June 2025

© 2025 The MathWorks, Inc.

4\ MathWorks

"/ Attendee Instructions

o{x All participants are muted
¥m Please ask questions in the Chat

Slides to be shared after the event

4\ MathWorks'

Agenda (45min)

= Polyspace Capalbilities
= Shift-Left
= Automation

Polyspace Capabilities

&\ MathWorks

Top 3 Values of Polyspace

1. Proof of Robustness < More Certainty
2. Shift Left, aka “Best place to fix” workflow <« More Efficiency
3. Adaptable tooling and interfaces < More Flexibility

Less Sacrifice on Quality

@\ MathWorks

Top 3 Values of Polyspace

1. Proof of Robustness < More Certaint

&\ MathWorks

Polyspace Static Analysis Objectives

Safety Security
Standards: Broad Coverage:
« DO-178 (aero) « |[EC 62304 (med) CERT, CWE, ISO 17961, ISO 21434 (auto)
« I1SO 26262 (auto) « I1SO 25119 (agr) * MISRA-C:2023, MISRA-C++:2023
« |[EC 61508 (industrial) + MISRA « Custom: DISA STIG, HMC guidelines, etc.
« EN 50128 (rail contror) « AUTOSAR « Security, Cryptography, Tainted data
« EN 50657 (rail roll. stock) » Proof of absence of runtime vulnerabilities

Proof of Robustness

Code Proving via Abstract Interpretation

» Prove absence of critical runtime errors (or find even the slightest vulnerability)

« Exhaustive: all possible inputs, control flows, data flows (no instrumentation, execution, test cases)
« Sound: no false negatives

Quality

“Traditional” Static Analysis Plus...

» Coding Standards * Formal Method: Runtime Behavior, Debugger-like view

« Find Probable Bugs, Defects ¢ Review Scopes / Software Quality Objectives

« Code Metrics « Simulink Integration: trace issues in generated code back to model

4\ MathWorks

Polyspace Code Prover

= Result Details : = Results List Variable Access Graph X Configuratiowl
\r%\ \| \@\ ()3 how_many_errors.c / how_many_errors() | Family ID « Group Check ®? Run-time Checks
48 Dataflow Non-initial
| - Status o
« Division by zero (7) \ViNo cEih ik < -~‘ 49 Dataflow Non-initial
Scalar division by zero does not occur - 50 Dataflow Non-initial @ Green 23
: Severi
operator / on type int 16 Severlty 51 Dataflow Non-nitial oG 0
left: 10 | Unset v | ray
o e 52 Dataflow Non-initial 1 0 00/ Oranae 0
right: [-347 .. -2] Comment e o g
result: [-5 .. 0] 53 Dataflow Non-initial ® Red 0
hT This is what .. e
we want! No - 54 Dataflow Non-initial Selectivity
E.. File e 55 Data flow Non-initial
1 « how_many_errors.c how_many_errors()

;)

56 Dataflow Non-initial 0 0
57 Dataflow Non-initial 9
58 Open New

= Source Code Data flow Non-initial

178 Numerical Division by—=cre

= how_many_errors.c X

1 int how_many_errors(int input) {
int x, vy, k;

179 Numerical Division by zero

183 Numerical Overflow

k = input / 100; 189 Numerical Overflow

X = 2;
k+5;

192 Numerical Overflow

196 Numerical Overflow

Proof of robustness

201 Numerical Overflow

202 Numerical Overflow ag ai n St u n kn Own

while (x 181 [
" x++; | operator/on type int 16
10 y=y

&« & 9

P00 9888888888884

-
B
|
x
1]
=

=
x
L}
<
h I | |

11 } =1 e left: 10
712 if ((3*k e right: [-347 .. -2] 207 Numerical Overflow L.
7 13 yar; | O result[-5.0] 217 Numerical Overflow Vu I n e rab I I Itl eS
15 Yy
16
17 return x; I
18}

&\ MathWorks

Polyspace Tools

Bug Finder =
—~>High Quality, Secure, Compliant Code:
 Measurable, Maintainable, Consistent
« Very few defects or vulnerabilities
« Credits for functional safety,
cybersecurity standards.

Code
Metrics

Good Practice

- Defect & Perf
5/ D . OrmanCe
Code Prover | e Standards \(éwgciig?smty Ciesowce an
- .) ! ag
—> Zero-Defect Code: S Cybersecurity (hundreds) COOCGC[‘ Orig, €meny

 Robust, Safe, Secure Guidelines Uy leg
* Proven free of critical runtime
defects and vulnerabilities

« Additional credits for standards.

4\ MathWorks'

Polyspace Test Major Capabilities

1 TR
estam
irn Prin P_mysq12
RO RS D)
=402 _mgk..

Tim
s
C/CHain™
Strist’, & 54
substr((stt'_ %“ 7};\

Write / Fix Code Test on Host Test on Target

Build tests Pass / Fail

Manage test execution Coverage analysis
Run on host or target Profile exec, memory

Authoring Execution Review

xUnit or GUI workflows

Mock/stub, link
requirements

Automatic test gen

 |DE or Command Line « Continuous Integration

« Desktop GUI « Results via browser

Developers and Testers Team Collaboration
10

| 4\ MathWorks
Workflows & Development, Testing |1| V&V, Certification >

Polyspace
(.
(Polyspace Web
Access Server)

Nightly Build, Change Control,
Continuous Integration, Acceptance Testing,
& QA/Testing QA/Testing

Jenkins

¢ Bamboo Polyspace Code Polyspace Code

) —_ Prover Server Polyspace Prover Server Polyspace
U GitLab Polyspace Bug Test Test

g Azure DevOps Finder Server

Etc... v Central Repositor

Automation || Results

Polyspace Bug
Finder Server

A

Developer Developer

obtains submits
code code

(time)

\ }
|
Integration Testing
Regression Testing
Release Testing
V&YV, Certification

Prover olyspace
—
Finder

Developer’s Branch

& eclipse Y Pol
isual 1 olyspace
s [1DE] dit—| [
’0 . Compile “(Polyspace as You

Etc... -

!

Peer Review
Unit Test

Polyspace Code
Prover

Run/Test Code IDE Plugin)

— Polyspace
Polyspace Code Polyspace Bug Test
Prover P0|yspace Finder
Polyspace Bug Test
‘»i Finder

11

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii8oS_-6PdAhXtQ98KHWfLC5YQjRx6BAgBEAU&url=https://marketplace.topdesk.com/jira-integration-by-topdesk/&psig=AOvVaw2h05vc4-AL-Ent-a3BfyIs&ust=1536240344328142

Developer Efficiency - Shift-Left

4\ MathWorks

Comprehensive static analysis for increased efficiency

| 4 \ Automate with ClI
Workflows

R —e

Catch and fix bugs Q' Collaborate with
while you code A0 Team Members

13

What are some of the actionable steps?

<< Shift Left <<

‘ n \ Automate +
use Cl Workflows

Catch and fix bugs
while you code

.

Collaborate with
Team Members

4\ MathWorks

14

| 4\ MathWorks

Comprehensive static analysis for sanity in your Dev[Sec]Ops

Quiality
Review Results / Collaborate Monitoring

& |
___ g Review

v

Polyspace
Access
Developer

4

4 f 1

IDE
(1]

Polyspace Code

L“L"D
F‘L"L")

. \\~ Prover Server @
— — — —
Pol B
FRIEIEES EE Build Polyspace Test Polyspace Test olyspace Bug
You Code* Finder Server
Code Build Quality
Repository Analyze Code Gate
\ J \
Component & other local workflows Continuous Integration automations

<< SHIFT LEFT <<

*Polyspace as You Code is a feature of Polyspace Access

15

First opportunity to fix bugs...

Polyspace as
You Code

-

_

Also supported:

s

and custom integrations

J

Kon demand.

...before committing.

...before running tests.

...while you remember the code.
...when it's easiest.

...when it's least expensive.

QHelp develop good habits

o =

\

/

4\ MathWorks'

16

Reduce cost with earliest verification

30x
15x
10x I

Requirements Integration Acceptance Production

Testing Testing

Source: National Institute of Standards and Technology (NIST)

_‘ MathWorks:

17

Find Bugs and Enforce Coding Standards

Q

** Numerical

Defect Types +»» Tainted Data
% Security

s Cryptography

“ MISRA C:2004

Coding Standards & MISRA C:2012

 CERTC

s Data Flow
s Concurrency
s Static Memory

% Dynamic Memory

% MISRA C++:2008

< AUTOSAR C++-14
» CERT C++

()

Good Practice

0.0

Performance

J
0.0

Resource Mgmt.

% Programming

% Naming Convention

“ JSF AV C++
“ ISO/IEC TS 17961

4\ MathWorks

18

Guidelines checks for software metrics

>

Complexity

‘ , +» Recursions

% Language Scope

Guidelines
% Function Coupling

* HIS

4\ MathWorks

Paths, Inputs, Calls

Project

File

Function

19

4\ MathWorks

Configuration
= File based configuration can be shared across teams
= Can also import from Polyspace Desktop or use options text files

4\ Checkers Selection = (] X
Select file ‘
© Defects 351/359 Select rules in category: [m] Al [m] Default High [M] Medium [M] Low
W Custom Rules 0/44 ‘ Fiter ‘ .
W Guidelines 0/20 |
¥ MISRAC:2023 177/203 |Meme pmpact omment

Context initialized incorrectly for digest operation Medium -
- HERR B 0203 Missing salt for hashing operation Medium
@ MISRA C:2004 0132 Nonsecure SSL/TLS protocol Medium
7 MISRAACAGC 0/130 Missing X.509 certificate Medium '
¥ MISRA C++:2023 0/179 Missing certification authority list Medium
7 MISRA C++:2008 214/214 Missing hash algorithm Medium
W ISO/EC TS 17961 0/46 No data added into context Medium
W SEICERTC 199/214 Missing final step after hashing update operation Medium
@ SEl CERT C++ 0/163 TLS/SSL connection method not set Medium
@ AUTOSAR C++14 0/370 TLS/SSL connection method set incorrectly Medium
T JSFAV G+ 0/160 Missing private key for X.509 certificate Medium
7 CWE 1881193 X.509 peer certificate not checked Medium

Server certificate common name not checked Medium

~ [m] Tainted data 16/17

Host change using externally controlled elements Medium

Use of externally controlled environment variable Medium

Tainted string format Low

Tainted sign change conversion Medium

[] Loop bounded with tainted value Medium

Memory allocation with tainted size Medium

Library loaded from externally controlled path Medium

Command executed from externally controlled path Medium

Execution of externally controlled command Medium

Tainted size of variable length array Medium

Tainted modulo operand Low -

20

’— J\MathWOI'kS'
Polyspace as You Code for all the C[++] code you write

@ CERT C: Rule ARR38-C x +

(& A © localhost

Help Center

Documentation

idit Selection View Go Run Terminal Help sut.c - PaYC_workflow - Visual Studio Code

.) Learn about CERT C: Rule ARR3
POLYSPACE s=s C sutc X Checks,vvhythey Guarantee that library fi
v QUALITY MONITORING src ? sut.c » QJ cpy_data(BUF_MEM *) matter and

size t max; . .
i indi = - xamples with fix
Monitor findings } BUF_MEM; examples es

for key files as
you code

Description
Definition
tee that library ns do not form inva

BU Fimu_\ beta : e Implementation
or th
* Mismatch between data length and size

Easy S h 0 rtC u ts fo r + Invalid use of standard library memory routine

+ Possible misuse of sizeof

BUF_MEM xo0s = al pha ~ d etal IS an d | n-co d e + Buffer overflow from incorrect string format specifier

+ Invalid use of standard library string routine.

cpy_data(BUF_MEM xalpha)

v RESULT DETAILS . . .- .
. num, 1 en gt h ’ J U Stl fl C atl O n + Destination buffer overflow in string manipulation
nat |lbrary fu... + Destination buffer underflow in string manipulation.

See f|nd|ng if : = 0@x0) return 0; Examples

1 1 tto' gl C31 ¢
detalls Wlth a. eht L0 Memepy . “ Mismatch between data length and size
38-C ’ -
traceback length = *(unsis | short *)os—data; |

memcpy(&(beta.data[num]), os—data + 2, length); Mismatch between data length and size
he length argument and dal

return(1); Show details about SEI CERT C:ARR38-C finding

Justify SEI CERT C:ARR38-C with annotation

Also supported: w local findings only
absolute_difference(int32_t x, int32_t y);

absolute_difference(int32_t x, int32_t y)

L Heartbleed bug.

pute the length argument di

Int325t s Example -
i g #in
if (x > y)

——
: >
1 L .
PROBLEMS 52 > DEBUG CONSOLE ERMINAL AZURE Filter (e.g. text, **/*.ts, **/node_modules/**) : . e
oN J X3 /* size of buffer */
) .) DCLOO-C Const-qualify immutable objects polyspace(SEI CERT C:DCLO0-C) [Ln “ol 14] IE M
1g: Build options file not req... M.) o

INTOO-C Understand the data model used by your implementation(s) p
and custom ; EXP19-C Use braces for the body of an if, for, or while statement pc
ile: my_payc_default.xml . .
integrations INTOO-C Understand the data model used by your implementation(s) |

EXP39-C Do not access a variable through a pointer of an incompatible type polyspace(SEI CERT C:EXP39-C) [Ln 76, Col 3¢

® ARR38-C Guarantee that library functions do not form invalid pointers polyspace(SEI CERT C:ARR38-C) [Ln 77, Col 5]

Fast local analysis on save and on-demand

overall Find All References Shift+Alt+F12
yprintf("-------
if (overall_status == Rename Symbol 2

Change All Occurrences Ctrl+F2
Format Document Shift+Alt+F

printf("LargeArra) Format Document With...
printf("\n"); Cut Ctrl+X
Copy Cirl+C

Paste Ctrl+V

Switch Header/Source Alt+0
PROBLEMS (4
- Go to Symbol in Editor... Ctrl+Shift+0O
test driver.c |4

Go to Symbol in Workspace... Ctrl+T
Vulnerable pseudo-random nun .

- Add files to the
Dead code poly [Defect:D Run Code Analysis on Active File quality monitoring

17.7 The value returned by a fur Regtart IntelliSense for Active File 2UENYY panel for continuous
17.7 The value returned by a fur Add Debug Configuration (Mg observation

Add file to the Polyspace Quality Monitoring list

Run ad-hoc analysis Run Polyspace Analysis Ctrl+Shift+Alt+A

when you need it Open Polyspace Documentation

Command Palette... Ctrl+Shift+P 1
2

Spaces: 2 UTF-8 CRLF C Win32 & Q

&\ MathWorks

22

Auto Fix

= Settings N c X E r unused_header.h test_driver.c

test_driver.c 2 ...

Insert generated
justification
comments

Auto-fix options for
straightforward

Justify Defect:USELESS_INCLUDE with annotation H
v 3 corrections

Justify all Defect:USELESS_INCLUDE findings in this file with annotation

Fix USELESS_INCLUDE: comment out useless #include directive.

Fix all USELESS_INCLUDE instances in current file: comment out use!_Js #inclu...
Fix USELESS_INCLUDE: remove useless #include directive..

Fix all USELESS_INCLUDE instances in current file: remove useless #include dir...

PROBLEMS (12 QUTPU TERMINAL

v test_driver.c (11
3.1 The character sequences /* and // shall not be used within a comment.
® Useless include poly (Defect:USELESS_INCLUDE) [Ln 20, Col 1]
Useless include p ct: UDE) [Ln |

338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)

676 Use of Potentially Dangerous Function
Dead code

571 Expression is Always True

570 Expression is Always False

561 Dead Code

&\ MathWorks

23

&\ MathWorks'

Avallable in the VS Code Marketplace

dJ Visual Studio | Marketplace

= Polyspace Access license
required
— Free trial available

Visual Studio Code > Programming Languages > Polyspace as You Code

‘ Polyspace as You Code
MathWorks 2 mathworks.com | & 2,345 installs |

Run Polyspace analysis and review results in your editor.

« Extension requires that you
install the Polyspace as You BT oo oo
Code engine

— links available on the marketplace

Overview Version History Q& A Rating & Review

page Polyspace as You Code Categor
I Programi
u
Windows Polyspace as You Code detects critical defects and security vulnerabilities and Debugge
. LinUX checks for code compliance with coding rule standards such as MISRA C®,
®
= macOS MISRA C++, AUTOSAR C++14, CERT® C, CERT C++, as well as custom Tags
naming conventions, and reports the findings within the source code view.
AUTOSAF

When connected to the Polyspace Access central repository, it can highlight

only new issues added by the developer compared to the development Coding s

Developer Efficiency - Automation

What are some of the actionable steps?

<< Shift Left <<

| ﬂ \ Automate +
use Cl Workflows

Catch and fix bugs
while you code

DevOps Automations

.o

Collaborate with
Team Members

@\ MathWorks

26

4\ MathWorks

o

Leverage [a | your | Cl system

- Automation of quality gates Jenkins
— Unit level ﬁ Bamboo

— Integration level
- Coordinate P GitLab

— What-if scenarios with feature branches
— Merge/Pull requests for aligning work GI Azure DevOps

@ Merge Request - Bug Finder analysis ~ @ Merge Request - Quality gate ,-,
integration-verification s quality-gate s EtC
Merge Request - Code Prover analysis —~

S

integration-verification

w

27

&\ MathWorks

Provide valuable feedback to your automation pipelines

¥ Bug Finder defect summary

Group High Overall_count

||||||||||||||

Overallcount 1

Polyspace Merge Request Commenter

uuuuuuuuuuuuuuuuuuuuu

» Bug Finder defect summary

Example of a pipeline posting custom merge request analysis results, and a quality
gate result set showing blocking results. Both with links to the actual results on
Polyspace Access.

Results exports can be sent to Cl
pipeline comments via your Cl system’s
REST API

= Provide summaries
= Links to results view on Access

= Quality gates to “stop the line” or
prevent a merge from adding
unwanted bugs

Implementation

- Some reference implementations
available by request

= Consulting support available

28

4\ MathWorks

Results in Polyspace Access

@ Currentl ID 23368 - Labels 23... \ > W % 5: E: =: Show on\y‘ Comment, filename, etc. ‘ @ % %

Defects -
Dashboard | ‘ - w LA (O] oetects Open To Do In Filter out ‘ Comment, filename, etc ‘ Layout Window | Open in Desktop
- E] Coding Standards ~ Progress - -
APPS RUN CUSTOM FILTERS FAMILY FILTERS FILTERS ENVIRONMENT REVIEW
Showing: 10 / 10
~ Project Explorer : Results List : Source Code
Filter Family ID Type Group Check Information Detail ©|: it x
~ [Otog-polyspace-as-you-code "l [O]% 846254... Defects Numerical Integer division by zero Impact: High Division by zet * || 292
demo-main-dev_BF 203 absolute_
- @ 646 C:2012 Dir 4 Code design D4.9 A function should ... Category: Advisory 204
demo-main-dev_CP
B Mecgert 71 [W] 646254... Preprocessor (PRE) PREOQO-C Prefer inline o... Category: Recommend... = random_nt
- ergeRequests 206
T [¥]+ 646254... SEICE 3-C Ensure that div... Category: Rule Division by zer | 297 }ocal_\,a]
v 22 [V] 646254... CWE * Indicates new Use of Potentially D... 208 ?‘ (randc
209
23-demo-merge-request-with-new-findings-comp % 646254... CWE f| n d | n g s as com p al‘ed Use of Potentially D... i? ﬁ:;aig;
23-demo-merge-request-with-new-findings-comp; 646254... CWE t Empty Code Block _
o target branch 212 check(1
» [toyota-itc @ 646254... CWE g Use of Cryptograph... rand'isacryp | 213
- Project Detalls d [¥] 646254... CWE TTTOOTT 8 Use of Cryptograph... 'rand' is a cryp i: ?‘ (randc
. [¥]+ 646254... CWE Numeric Errors 369 Divide By Zero Division by zer /516 Mediume
Project 217 }
218
Name 23-demo-merge-request-with-new-findings- 219 switch (F
comparison_BF 220 {
Author ftrue 221
. ||222 case 1:
Language C q 3 223 M count =
Tools Bug Finder | Result Details : i: .{‘c.c.’_': (ir
Coding CWE, MISRA C:2012, SEI CERT C [] Variable trace [] Show the 2 identical findings sut.c / my_function() | 226 Medi
Standards 227 local
Number 3 N Status 228 }
of Runs [©] Integer division by zero (Impact: High) (7) 229 break;
— - - Division by zero. 238
epilli?:; el This check may be a path-related issue, which is not dependent on input values Severity i; case 23
233 local_v
Run (ID 23368) Event File Scope B | Assignedto 234 for (ir
. 1 Integer division by zero sut.c my_function o (= {
Upll;atd 10/12/23, 10:51 AM (O] Integ v V- 0 [Type usemame or ... |~] ||52 Small
ate
Comment 237 use_c
Labels |23-demo-merae-reauest-with-new-findinas-compariso 238 local

29

Wrap-up

@\ MathWorks

Which verification effort is easier?

Only testing Using Polyspace

* Significant uncertainty « Automated Proof

* More churn from later Avoid needless churn
development stages with Pre-integration

» Extra work for analysis
certification processes Credits for certification

Processes

31

Implementation Plan and Support Options

Getting Started (iree)

* License & Install Support
* Online documentation, incl:
» Getting started, what'’s

new, examples, context-
sensitive help, ...

* AE-guided “quick start”
» Technical Support

Training (add'l cost)

* End Users (1 Day)
- Create effective
reviewers
» Power Users (2-3 Day)
« Create experts able to
set up analysis and
support others

Consulting (add cost)

» Advanced setup

* Integrations

* Scripting and
automation

* Report customization

* Etc.

4\ MathWorks

Ongoing Support(ree)

 Technical Support

» Awareness building:
seminars, lunch-n-learns,

workshops, etc.

* Check-ins, “What’s new”
briefings

» AE “Office Hours”

» Etc.

32

Training Courses

Model-Based Design for DO-
178C/D0-331 Compliance

Build on prior knowledge of
Simulink modeling principles
and verification workflows in
Simulink and Polyspace to
generate production code
intended for DO-178C
certification.

ADVANCED

Polyspace for C/C++ Code
Verification

Prove code correctness, review

and understand verification
results, handle missing
functions and data, measure
software quality metrics, and
apply MISRA C rules.

INTERMEDIATE

Reviewing Polyspace Results

Interpret Polyspace Bug Finder
and Polyspace Code Prover
results in Polyspace Access to
remove algorithmic defects,
improve software quality
metrics, and improve product
integrity.

INTERMEDIATE

4@\ MathWorks

33

	Default Section
	Slide 1: C and C++ DevOps with GitLab, Visual Studio Code, and Polyspace
	Slide 2
	Slide 3: Agenda (45min)

	Landscape
	Slide 4: Polyspace Capabilities
	Slide 5: Top 3 Values of Polyspace
	Slide 6: Top 3 Values of Polyspace
	Slide 7: Polyspace Static Analysis Objectives
	Slide 8: Polyspace Code Prover
	Slide 9: Polyspace Tools
	Slide 10: Polyspace Test Major Capabilities
	Slide 11

	PaYC
	Slide 12: Developer Efficiency  Shift-Left
	Slide 13: Comprehensive static analysis for increased efficiency
	Slide 14: What are some of the actionable steps?
	Slide 15: Comprehensive static analysis for sanity in your Dev[Sec]Ops
	Slide 16: First opportunity to fix bugs…
	Slide 17: Reduce cost with earliest verification
	Slide 18: Find Bugs and Enforce Coding Standards
	Slide 19: Guidelines checks for software metrics
	Slide 20: Configuration
	Slide 21: Polyspace as You Code for all the C[++] code you write
	Slide 22: Fast local analysis on save and on-demand
	Slide 23: Auto Fix
	Slide 24: Available in the VS Code Marketplace

	Automation
	Slide 25: Developer Efficiency  Automation
	Slide 26: What are some of the actionable steps?
	Slide 27: Leverage [a | your] CI system
	Slide 28: Provide valuable feedback to your automation pipelines
	Slide 29: Results in Polyspace Access

	Wrap-Up
	Slide 30: Wrap-up
	Slide 31: Which verification effort is easier?
	Slide 32: Implementation Plan and Support Options
	Slide 33: Training Courses
	Slide 34

