
1© 2025 The MathWorks, Inc.

C and C++ DevOps with GitLab,

Visual Studio Code,

and Polyspace

Matt Rhodes

Presented 4 June 2025

2

Attendee Instructions

Please ask questions in the Chat

All participants are muted

Slides to be shared after the event

3

Agenda (45min)

▪ Polyspace Capabilities

▪ Shift-Left

▪ Automation

Polyspace Capabilities

5

Top 3 Values of Polyspace

1. Proof of Robustness

2. Shift Left, aka “Best place to fix” workflow

3. Adaptable tooling and interfaces

Less Sacrifice on Quality

 More Certainty

 More Efficiency

 More Flexibility

6

Top 3 Values of Polyspace

1. Proof of Robustness

2. Shift Left, aka “Best place to fix” workflow

3. Adaptable tooling and interfaces

 More Certainty

 More Efficiency

 More Flexibility

TODAY

7

Security

Broad Coverage:

• CERT, CWE, ISO 17961, ISO 21434 (auto)

• MISRA-C:2023, MISRA-C++:2023

• Custom: DISA STIG, HMC guidelines, etc.

• Security, Cryptography, Tainted data

• Proof of absence of runtime vulnerabilities

Safety

Standards:

• DO-178 (aero)

• ISO 26262 (auto)

• IEC 61508 (industrial)

• EN 50128 (rail control)

• EN 50657 (rail roll. stock)

• IEC 62304 (med)

• ISO 25119 (agr)

• MISRA

• AUTOSAR

Polyspace Static Analysis Objectives

Quality

“Traditional” Static Analysis

• Coding Standards

• Find Probable Bugs, Defects

• Code Metrics

Plus…

• Formal Method: Runtime Behavior, Debugger-like view

• Review Scopes / Software Quality Objectives

• Simulink Integration: trace issues in generated code back to model

Proof of Robustness

Code Proving via Abstract Interpretation

• Prove absence of critical runtime errors (or find even the slightest vulnerability)

• Exhaustive: all possible inputs, control flows, data flows (no instrumentation, execution, test cases)

• Sound: no false negatives

8

Polyspace Code Prover

Proof of robustness

against unknown

vulnerabilities

9

Proving
Absence
of Critical
Defects &
Vulnerabilities
(dozens)

Defect &
Vulnerability
Checkers
(hundreds)

 Coding
Standards,
Cybersecurity

Guidelines

Code
Metrics

Code Prover
→Zero-Defect Code:

• Robust, Safe, Secure

• Proven free of critical runtime

defects and vulnerabilities

• Additional credits for standards.

Bug Finder
→High Quality, Secure, Compliant Code:

• Measurable, Maintainable, Consistent

• Very few defects or vulnerabilities

• Credits for functional safety,

cybersecurity standards.

Polyspace Tools

10

Polyspace Test Major Capabilities

C/C++

Write / Fix Code Test on TargetTest on Host

Authoring

xUnit or GUI workflows

Execution Review

Mock/stub, link
requirements

Automatic test gen

Pass / Fail

Coverage analysis

Profile exec, memory

Build tests

Manage test execution

Run on host or target

• Continuous Integration

• Results via browser

• IDE or Command Line

• Desktop GUI

Developers and Testers Team Collaboration

11

Central Repository

Developer’s Branch

Developer

obtains

code

Developer

submits

code

Nightly Build,

Continuous Integration,

QA/Testing

Edit

Compile

Run/Test

Peer Review

Unit Test

Change Control,

Acceptance Testing,

QA/Testing

A
u

to
m

a
ti
o

n
O

n
-d

e
m

a
n
d

(Repeat…)

Workflows

(time)

Integration Testing

Regression Testing

Release Testing

V&V, Certification

 Development, Testing V&V, Certification →
A

s
 y

o
u

 c
o

d
e

R
e

s
u

lt
s

IDE

Etc…

Image result for Jira

Etc…

Polyspace

Access

Polyspace Bug

Finder

Polyspace Code

Prover
Polyspace Bug

Finder

Polyspace Code

Prover

Polyspace Bug

Finder

Polyspace Code

Prover

Polyspace Bug

Finder Server

Polyspace Code

Prover Server

Polyspace Bug

Finder Server

Polyspace Code

Prover Server

Polyspace

Access

(Polyspace Web

Access Server)

(Polyspace as You

Code IDE Plugin)

Polyspace

Test

Polyspace

Test

Polyspace

Test

Polyspace

Test

Polyspace

Test

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwii8oS_-6PdAhXtQ98KHWfLC5YQjRx6BAgBEAU&url=https://marketplace.topdesk.com/jira-integration-by-topdesk/&psig=AOvVaw2h05vc4-AL-Ent-a3BfyIs&ust=1536240344328142

Developer Efficiency → Shift-Left

13

Comprehensive static analysis for increased efficiency

Collaborate with

Team Members

</>

Catch and fix bugs
while you code

Automate with CI
Workflows

14

<< Shift Left <<

What are some of the actionable steps?

Collaborate with

Team Members

</>

Catch and fix bugs
while you code

Automate +
use CI Workflows

15

Comprehensive static analysis for sanity in your Dev[Sec]Ops

Build Quality

GateAnalyze Code

Polyspace Bug

Finder Server

Polyspace Code

Prover Server

Polyspace

Access

Code

Repository

Polyspace as

You Code*

Developer

Review Results / Collaborate

IDE

Quality

Monitoring

Team

Review

Build

Component & other local workflows Continuous Integration automations

*Polyspace as You Code is a feature of Polyspace Access

<< SHIFT LEFT <<

Polyspace Test Polyspace Test

16

First opportunity to fix bugs…

…on demand.

…before committing.

…before running tests.

…while you remember the code.

…when it’s easiest.

…when it’s least expensive.
Also supported:

and custom integrations

+ Help develop good habits

DEMO

17

Requirements Coding Integration
Testing

Acceptance
Testing

Production

Reduce cost with earliest verification

1x

5x

10x

30x

15x

Source: National Institute of Standards and Technology (NIST)

18

Find Bugs and Enforce Coding Standards

❖ Static Memory ❖ Resource Mgmt.❖ Security

❖ Concurrency❖ Tainted Data ❖ Performance

❖ Numerical ❖ Data Flow ❖ Good Practice

❖ Programming❖ Cryptography ❖ Dynamic Memory

Defect Types

Coding Standards

❖ CERT C ❖ CERT C++ ❖ ISO/IEC TS 17961

❖ MISRA C:2012 ❖ AUTOSAR C++-14 ❖ JSF AV C++

❖ MISRA C++:2008 ❖ Naming Convention❖ MISRA C:2004

19

Guidelines checks for software metrics

Guidelines

❖ Paths, Inputs, Calls ❖ Complexity

❖ File❖ Language Scope

❖ Function❖ Function Coupling

❖ Project❖ Recursions

❖ HIS

20

Configuration

▪ File based configuration can be shared across teams

▪ Can also import from Polyspace Desktop or use options text files

21

Polyspace as You Code for all the C[++] code you write

Monitor findings

for key files as

you code

See finding

details with a

traceback

Easy shortcuts for

details and in-code

justification

Also supported:

and custom

integrations

Learn about

checks, why they

matter, and

examples with fixes

22

Fast local analysis on save and on-demand

Add files to the

quality monitoring

panel for continuous

observation

Run ad-hoc analysis

when you need it

23

Auto Fix

Auto-fix options for

straightforward

corrections

Insert generated

justification

comments

24

Available in the VS Code Marketplace

▪ Polyspace Access license

required

– Free trial available

▪ Extension requires that you

install the Polyspace as You

Code engine

– links available on the marketplace

page
▪ Windows

▪ Linux

▪ macOS

Developer Efficiency → Automation

26

<< Shift Left << DevOps Automations

What are some of the actionable steps?

Collaborate with

Team Members

</>

Catch and fix bugs
while you code

Automate +
use CI Workflows

27

Leverage [a | your] CI system

Etc…

▪ Automation of quality gates

– Unit level

– Integration level

▪ Coordinate

– What-if scenarios with feature branches

– Merge/Pull requests for aligning work

DEMO

28

Provide valuable feedback to your automation pipelines

Results exports can be sent to CI
pipeline comments via your CI system’s
REST API

▪ Provide summaries

▪ Links to results view on Access

▪ Quality gates to “stop the line” or
prevent a merge from adding
unwanted bugs

Implementation

▪ Some reference implementations
available by request

▪ Consulting support available
Example of a pipeline posting custom merge request analysis results, and a quality

gate result set showing blocking results. Both with links to the actual results on

Polyspace Access.

29

Results in Polyspace Access

* Indicates new

findings as compared

to target branch

Wrap-up

31

Which verification effort is easier?

Only testing

• Significant uncertainty

• More churn from later
development stages

• Extra work for
certification processes

Using Polyspace

• Automated Proof

• Avoid needless churn
with Pre-integration
analysis

• Credits for certification
processes

32

Implementation Plan and Support Options

Getting Started (free)

• License & Install Support

• Online documentation, incl:

• Getting started, what’s
new, examples, context-
sensitive help, …

• AE-guided “quick start”

• Technical Support

Training (add’l cost)

• End Users (1 Day)

• Create effective
reviewers

• Power Users (2-3 Day)

• Create experts able to
set up analysis and
support others

Consulting (add’l cost)

• Advanced setup

• Integrations

• Scripting and
automation

• Report customization

• Etc.

Ongoing Support (free)

• Technical Support

• Awareness building:
seminars, lunch-n-learns,
workshops, etc.

• Check-ins, “What’s new”
briefings

• AE “Office Hours”

• Etc.

33

Training Courses

Q
A

&

	Default Section
	Slide 1: C and C++ DevOps with GitLab, Visual Studio Code, and Polyspace
	Slide 2
	Slide 3: Agenda (45min)

	Landscape
	Slide 4: Polyspace Capabilities
	Slide 5: Top 3 Values of Polyspace
	Slide 6: Top 3 Values of Polyspace
	Slide 7: Polyspace Static Analysis Objectives
	Slide 8: Polyspace Code Prover
	Slide 9: Polyspace Tools
	Slide 10: Polyspace Test Major Capabilities
	Slide 11

	PaYC
	Slide 12: Developer Efficiency  Shift-Left
	Slide 13: Comprehensive static analysis for increased efficiency
	Slide 14: What are some of the actionable steps?
	Slide 15: Comprehensive static analysis for sanity in your Dev[Sec]Ops
	Slide 16: First opportunity to fix bugs…
	Slide 17: Reduce cost with earliest verification
	Slide 18: Find Bugs and Enforce Coding Standards
	Slide 19: Guidelines checks for software metrics
	Slide 20: Configuration
	Slide 21: Polyspace as You Code for all the C[++] code you write
	Slide 22: Fast local analysis on save and on-demand
	Slide 23: Auto Fix
	Slide 24: Available in the VS Code Marketplace

	Automation
	Slide 25: Developer Efficiency  Automation
	Slide 26: What are some of the actionable steps?
	Slide 27: Leverage [a | your] CI system
	Slide 28: Provide valuable feedback to your automation pipelines
	Slide 29: Results in Polyspace Access

	Wrap-Up
	Slide 30: Wrap-up
	Slide 31: Which verification effort is easier?
	Slide 32: Implementation Plan and Support Options
	Slide 33: Training Courses
	Slide 34

