MATLAB EXPO 2016
Messdatenerfassung mit MATLAB – so einfach geht’s
Dr. Frank Graeber
Typical challenges in Test & Measurement

- Integrating hardware not straightforward
- Multiple tools for accessing, analyzing and sharing data
- Data format conversions necessary
- Handling of streaming data
- Automation of workflow
- Application deployment
Hardware Support - Add-On Explorer
Example: Read Waveform from Instruments

Use App for Instrument Connection

- Using MATLAB instrument driver
- Using SCPI commands
Instrument Control App
Set up Connection using MATLAB Instrument Driver
Select MATLAB Instrument Driver (*.mdd files)
% Create on time: 1-Nov 2015 19:09:39

% Create a SERIAL object.
interfaceObj = instrfind('Type', 'serial', 'Port', 'COM3', 'Tag', '');

% Create the SERIAL object if it does not exist
% otherwise use the object that was found.
if isempty(interfaceObj)
 interfaceObj = serial('COM3');
else
 fclose(interfaceObj);
 interfaceObj = interfaceObj(1);
end

% Create a device object.
deviceObj = icdevice('tekonix_tda210.mdd', interfaceObj);

% Connect device object to hardware.
connect(deviceObj);

% Execute device
groupByObj = g
[data, time] = channel1;

% Delete objects.
delete([deviceObj interfaceObj]);
MATLAB Connects to Your Hardware Devices

Instrument Control
Instruments and RS-232 serial devices

Data Acquisition
Plug-in data acquisition devices and sound cards

Image Acquisition
Image capture devices

Vehicle Networks / CAN bus devices
CAN bus devices using CAN and XCP protocols

MATLAB
External Interfaces for connecting other devices
Instrument Control Toolbox

Enables MATLAB to configure, control, and transfer data with instruments such as oscilloscopes, signal generators, and spectrum analyzers

- Integrate instruments into MATLAB applications and Simulink models
- Interactive tool for detecting and controlling instruments
- Automatic code generation for faster and easier implementation
- Support for IVI, VXI plug&play, and MATLAB instrument drivers
- Support for common communication protocols
Data Acquisition Toolbox

Acquire and output data from data acquisition boards

- Immediately analyze live or acquired data in MATLAB and Simulink
- Configure hardware without leaving MATLAB
- Incorporate custom analysis into PC-based digital oscilloscope
- Ability to do “one-shot” or continuous acquisition
- Support multiple data acquisition devices and vendors
Image Acquisition Toolbox

Acquire images and video from industry-standard hardware

- Acquire live image and video streams directly into MATLAB and Simulink
- Configure hardware without leaving MATLAB
- Enable single-frame and streaming acquisition
- Permit immediate image processing and analysis
- Support multiple image acquisition devices and vendors
Vehicle Network Toolbox
Communicate with in-vehicle networks using CAN and XCP protocols

- MATLAB functions for transmitting and receiving CAN and XCP messages
- CAN and XCP Simulink blocks for interfacing Simulink to a CAN bus or ECU
- Bit packing and unpacking functions and blocks for simplified encoding and decoding of CAN messages
- CAN bus app for visualizing live CAN traffic
- Ability to filter, log and replay CAN messages
- Support for Vector, Kvaser and NI interface hardware
- Support for A2L Description Files and Vector CAN Database
Test & Measurement Apps
MATLAB Advanced Analytics Algorithms
Extensive toolboxes and apps

- MATLAB programming
- Point-and-click Apps
Summary

- Easy driver installation through hardware support packages
- Data acquisition from a range of devices
- Handling, visualizing and processing data made easy
- One environment covering the whole Test & Measurement workflow