MATLAB EXPO 2016
Schneller modellbasiert entwickeln mit Simulink in R2016a

Gernot Schraberger
Automatic Solver Option

Set up and simulate your model more quickly with automatically selected solver settings

- Simulink will select a solver and step size that is optimized for your specific model
- Considers factors such as model stiffness and simulation performance
- All new Simulink models use the automatic solver option
- Can optionally lock down solver so that it does not change from one simulation to another
Simulink Solver Profiler

Troubleshoot simulation issues with detailed solver profiling data

- The solver profiler logs and reports all the events when the solver tries to take too large step:
 - Zero-crossing event
 - Tolerance exceeded
 - Newton Iteration failure
 - Newton iteration for DAE failure
Simulink Units

Specify, visualize, and check consistency of units on interfaces

- Specify physical units for Simulink signals and bus elements at the interfaces of components such as subsystems, model references, Stateflow charts and MATLAB function blocks
- Identify unit mismatches at the component interfaces
- Enforce consistency is by restricting the unit systems for certain components using the configuration parameter, ‘Allowed unit systems’
Single-Selection Actions

Access commonly used editing actions when clicking a block or signal line

- Select a block or signal line in a Simulink and a cue appears that lets you select a common action to perform
- For blocks, you can comment or uncomment the block or hide or display the block name using this cue
- For signal lines, you can autoroute the line or enable or disable signal logging
One-Click Display

Click a signal line when the simulation is running to view the current value

- Display port value for a signal by clicking it during simulation for easy debugging
- For bus signals, select the signals of interest before simulation
Variant Source and Sink Blocks with Condition Propagation

Design variant choices and automatically remove unneeded functionality based on block connectivity

- Add variants that are graphically available in the editor and not encapsulated.
- Variant conditions are propagated to other blocks based on settings in the model.
- Variant annotations and the Variant Conditions Legend are used to better understand condition propagation.
- You can generate code for either the active variant choice or generate preprocessor conditionals using Variant Source and Sink blocks.
Simscape

Run-Time Parameters

- Change parameter values without recompiling the model

- **Uses:**
 - Fast Restart in Simulink
 - Model Reference
 - HIL (SLRT or ERT target)

- Enable via MATLAB preferences
 - New drop-down on blocks (shipping and custom Simscape blocks)
Sensitivity Analysis
Determine most influential parameters in your Simulink model

- Run Monte Carlo Analysis on Simulink Model
- Find Sensitivity of System Output depending on Parameter Tolerances
 - Increase Reliability & Robustness
- Find a good initial point for a design optimization session
 - Improve Performance
Three-Way Model Merge

- Graphically view and merge models when working in team setting
- An interactive comparison report with the two conflicting designs along with the original base model
Authoring, Managing and Executing Tests

Test Harnesses
- Harness list dialog
- Library harnesses
- Simulink functions/export function models support (AutoSAR)
- Externally-saved harnesses
- Requirements linking

Test Sequence Block
- Syntax highlighting
- Tab completion
- Enhanced symbol sidebar
- Message I/O, function call
- Description column
- "verify" statement
- API
- Requirements linking

Test Manager
- Coverage
- Parallel test execution
- Report customization
- Iterations
- Dependency/impact analysis
- Test for subsystems
- Real-time test cases (SLRT)