SPIDER: Simulation Platform For The Integration Of Distributed Energy Resources

FRANCK BOURRY, MATLAB EXPO,
21/06/2016

CONFIDENTIEL
Overview

- SmartGrids at CEA
- Modeling and simulating Smartgrids: What are the challenges?
- SPIDER: Simulation Platform for the Integration of Distributed Energy Resources
- Conclusions and next steps
SMARTGRIDS AT CEA
CEA at a glance

Defence Security
- Defence Applications Division

Nuclear Energy
- Nuclear Energy Division

Research & Technology
- Technological Research Division

French strategic independance

French energetic independance

Fundamental Research
- Material Science Division / Life Science Division

Technological
- 4,500 employees
- 550 M€ budget
- 500 priority patents filed / year
- 50 spin-off companies

Science
Mission of CEA Tech

Government & Universities

GAP

Private companies

Pump priming 25% (5 - 10 years)

Technology transfer 75% (1 - 3 years)

Technology Readiness Level

1 2 3 4 5 6 7 8 9

1. Basic Technology Research
2. Research to prove feasibility
3. Technology Development
4. Technology Demonstration
5. System/Subsystem Development
6. System Test, Launch & Operations

CONFIDENTIEL
Smart-grid lab

Topics
- Smart VE
- Smart Storage
- Smart Grid
- Smart Building/City

LSEI

E-plateforme: complex system simulation, SCADA

P/C HIL: Power and control hardware in the loop

PRISMES: experimental micro grid

CONFIDENTIEL
Hybrid systems

- Grid stability?
- Reserves?

Districts

- Voltage level?
- Centralized VS distributed EMS?

PV plant

- New strategies for market integration?
- Contribution to ancillary services?
MODELING AND SIMULATING SMARTGRIDS
What are the objectives associated to Smartgrid modeling and simulation?

1. Support for the development of advanced controls:
 - Energy Management Systems (EMS)

2. Optimal sizing and configuration:
 - Component sizing (PV, Storage, …)
 - Analysis of different electric architecture

3. Model delivery to partners;

 ➔ Need for a tool which covers different activities, from pre-sizing to development of advanced controls.
Model Based Design for Smartgrid modeling

Control

Planning control #1

Planning control #i

Operation control

Plant

measures

set points

CONFIDENTIEL
Control

User events

Planning controls

Operation control

Plant

Power

PV

GRID
<table>
<thead>
<tr>
<th>Planning control</th>
<th>Sizing/ Preliminary design</th>
<th>Control design</th>
<th>Control / Model / Hardware-in-the-loop</th>
<th>Control deployment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **PC**: rapid prototyping
- **micro controller**: PHIL
- **PHIL**: real plant
Steps to smartgrid deployment

Towards smart grid deployment

Legend:
- PC
- rapid prototyping
- micro controller
- PHIL
- real plant
Steps to smartgrid deployment

Towards smart grid deployment

<table>
<thead>
<tr>
<th>Planning control</th>
<th>Operation control</th>
<th>Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizing/ Preliminary design</td>
<td>Control design</td>
<td>Control / Model / Hardware-in-the-loop</td>
</tr>
<tr>
<td>Predictive optimal planning control (perfect predictions)</td>
<td>Predictive optimal planning control</td>
<td>Predictive optimal planning control</td>
</tr>
<tr>
<td>Simple operational control (optional)</td>
<td>operational control (PID)</td>
<td>operational control</td>
</tr>
<tr>
<td>Simple model</td>
<td>Detailed model</td>
<td>Real plant or Power-hardware-in-the-loop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Real plant</td>
</tr>
</tbody>
</table>

Legend:
- PC
- rapid prototyping
- micro controller
- PHIL
- real plant
From Simulation to field tests

« Control/Power hardware-in-the loop »
Control validation, component characterisation

Experimental validation
With an adequate information system
SPIDER

Model factory

Model developpers
Experts
10 persons at INES

Spécifications

Simulation users
Non experts
Transfer (industrial partners)
Challenges associated to model development (1)

- Problem: develop models with different levels of precision (for different applications), and different requirements (computation time, ...)

 - Example for diesel generator models:
 - Models which informs about power limits and fuel consumption for system sizing;
 - Models which describe the eclectic behavior of the system for grid stability analysis.

- Solution: use Simulink models or Simscape PowerSystems models depending on the application
Challenges associated to model development (2)

Problem: maintain the models libraries operational, with a high level of documentation

Solution:

- Propose a model development framework, with a format for parameters and a set of validation tests for each model.
- Develop MATLAB scripts to:
 - Run non-regression tests;
 - Build automatic documentation (wiki format).
Challenges associated to model development (3)

Problem: develop component models in line with existing standards

- FMI
 - Compiled models
 - Intellectual property protection
 - Standardized format with a description of Inputs / Outputs / Parameters;

Solution:

- Use Embedded Coder + FMI export to generate FMI models;
- Proposed equivalent models for models which are not compiled.
SPIDER 1.0

Component and control models
- Simulation engine
- Simulink based

System Modeling, including GUI

Technic and economic indicators
- Simulation
- Optimization
- Sensitivity analysis

CONFIDENTIEL
SPIDER 1.0
Next steps

- **Model factory:**
 - Development of new control and component models, related to industrial and academic partnerships;
 - Technologies related to smart grids: Storage, Renewable generation;
 - Advanced controls, including optimal planning

- Development of specific methods and tools for defining system operation strategies;

- Deployment: model compiling and master algorithm.
Use case example:

Use cases:
- Energy Management System validation for hybrid systems
CONCLUSIONS
Conclusions

- SPIDER: an adequate tool for EMS development and evaluation

- Appropriate modeling and simulation framework for smart grid application: MATLAB–Simulink

- Possibility to develop a range of models for different applications: Simulink – Simscape PowerSystems

- Possibility to compile normalized models; MATLAB Coder – Simulink Coder – Embedded coder