MATLAB EXPO 2018

Deploying Deep Learning Networks to Embedded GPUs and CPUs

Pierre Nowodzienski
Deep Learning enablers

Increased GPU acceleration

Labeled public datasets

World-class models to be leveraged

- AlexNet: PRETRAINED MODEL
- VGG-16: PRETRAINED MODEL
- ResNet: PRETRAINED MODEL

Caffe
GoogLeNet
TensorFlow/Keras

Human Accuracy

Error (%)
Deep Learning Applications:
Image classification, speech recognition, autonomous driving, etc…

Detection of cars and road in autonomous driving systems

Rain Detection and Removal

1. Deep Joint Rain Detection and Removal from a Single Image

Traffic Sign Recognition
GPUs and CUDA programming

- CUDA
- OpenCL
- C/C++
- MATLAB
- Python

Ease of programming (expressivity, algorithmic, …)

faster
easier

GPUs are “hardware on steroids”, ...

but, programming them is hard
Deep learning workflow in MATLAB

- **Deep Neural Network Design + Training**
 - **Design in MATLAB**
 - Manage large data sets
 - Automate data labeling
 - Easy access to models
 - **Training in MATLAB**
 - Acceleration with GPU’s
 - Scale to clusters
Deep learning workflow in MATLAB

Deep Neural Network Design + Training

- Idea
- Caffe
- TensorFlow
- Keras
- Model importer
- Train in MATLAB
- Trained DNN

Application design

- Application logic
- Localization
- Planning
- Autonomous systems
- Deep learning Perception
- Controls
Deep learning workflow in MATLAB

Deep Neural Network Design + Training

Deep Neural Network Design + Training

Standalone Deployment

Application design

Application logic

Train in MATLAB

Trained DNN

Model importer

Caffe

Keras

TensorFlow

Model importer

GPU Coder

C++/CUDA
GPU Coder for Deployment

Accelerated implementation of parallel algorithms on GPUs & CPUs

Deep Neural Networks
Deep Learning, machine learning

Image Processing and Computer Vision
Image filtering, feature detection/extraction

Signal Processing and Communications
FFT, filtering, cross correlation,

5x faster than TensorFlow
2x faster than MXNet

60x faster than CPUs for stereo disparity

20x faster than CPUs for FFTs

Intel MKL-DNN Library
NVIDIA CUDA C/C++
ARM Compute Library

GPU Coder

Accelerated implementation of parallel algorithms on GPUs & CPUs
GPUs and CUDA

CUDA kernels

C/C++

GPU CUDA Cores

GPU Memory Space

ARM Cortex

CPU Memory Space

SECURITY ENGINES

4K60 VIDEO ENCODER

60 VIDEO DECODER

AUDIO ENGINE

2D ENGINE

DISPLAY ENGINES

128-bit LPDDR4

BOOT and PM PROC

GigE Ethernet MAC

IMAGE PROC (ISP)

Safety Engine

I/O
Challenges of Programming in CUDA for GPUs

- Learning to program in CUDA
 - Need to rewrite algorithms for parallel processing paradigm

- Creating CUDA kernels
 - Need to analyze algorithms to create CUDA kernels that maximize parallel processing

- Allocating memory
 - Need to deal with memory allocation on both CPU and GPU memory spaces

- Minimizing data transfers
 - Need to minimize while ensuring required data transfers are done at the appropriate parts of your algorithm
GPU Coder Helps You Deploy to GPUs Faster

- Library function mapping
- Loop optimizations
- Dependence analysis

- Data locality analysis
- GPU memory allocation

- Data-dependence analysis
- Dynamic memcpy reduction

GPU Coder

CUDA Kernel creation

Memory allocation

Data transfer minimization

NVIDIA CUDA C/C++
GPU Coder speeds up MATLAB for Image Processing and Computer Vision

- Fog removal: 5x speedup
- Distance transform: 8x speedup
- Ray tracing: 18x speedup
- Frangi filter: 3x speedup
- Stereo disparity: 50x speedup
- SURF feature extraction: 700x speedup
GPU Coder speeds up MATLAB at least 2x for inference

MATLAB 18a on TitanXP GPU - Linux

Images / Sec

- AlexNet: 700 Images / Sec
- ResNet-50: 150 Images / Sec
- VGG-16: 200 Images / Sec

Single image prediction using Intel® Xeon® CPU - 3.6 GHz, NVIDIA libraries: CUDA8 - cuDNN 7, TensorFlow 1.6.0, MXNet 1.1.0, MATLAB 18a
With GPU Coder, MATLAB is faster than other frameworks

Single Image Prediction (TitanXP GPU, Linux)

Images / Sec

- AlexNet
- ResNet-50
- VGG-16

TensorFlow
MXNet
GPU Coder

Single image prediction using Intel® Xeon® CPU - 3.6 GHz, NVIDIA libraries: CUDA8 - cuDNN 7, TensorFlow 1.6.0, MXNet 1.1.0, MATLAB 18a
Embedded GPU Benchmarking: Jetson TX2

Images / sec

- GPU Coder (TensorRT v3.0.4)
- GPU Coder (cuDNN v7)
- Caffe

Memory Usage (MB)

- GPU Coder (TensorRT v3.0.4)
- GPU Coder (cuDNN v7)
- Caffe
Algorithm Design to Embedded Deployment Workflow

MATLAB algorithm (functional reference)

Build type

Call CUDA from MATLAB directly

Call CUDA from (C++) hand-coded main()

Call CUDA from (C++) hand-coded main().

Cross-compiled .lib

Embeded .lib

Desktop GPU

C++

Real-time test

1. Functional test
2. Deployment unit-test
3. Deployment integration-test
Demo: Alexnet Deployment with ‘mex’ Code Generation
Algorithm Design to Embedded Deployment on Tegra GPU

MATLAB algorithm (functional reference) → GPU Coder → Build type

1. Functional test (Test in MATLAB on host)
2. Deployment unit-test (Test generated code in MATLAB on host + GPU)
3. Deployment integration-test (Test generated code within C/C++ app on host + GPU)
4. Real-time test (Test generated code within C/C++ app on Tegra target)

Build type:
- Call CUDA from MATLAB directly
- Call CUDA from (C++) hand-coded main()

Cross-compiled .lib

Call CUDA from (C++) hand-coded main(). Cross-compiled on host with Linaro toolchain
Alexnet Deployment to Tegra: Cross-Compiled with ‘lib’

Two small changes

1. Change build-type to ‘lib’

2. Select cross-compile toolchain
End-to-End Application: Lane Detection

Alexnet

Transfer Learning

Output of CNN is lane parabola coefficients according to: \(y = ax^2 + bx + c \)

Lane detection CNN

Left lane coefficients

Right lane coefficients

Post-processing (find left/right lane points)

Image with marked lanes

GPU coder generates code for whole application
Deep learning workflow in MATLAB

Deep Neural Network Design + Training

- Caffe
- IDEA
- TensorFlow

Train in MATLAB

Model importer

Trained DNN

Application design

GPU Coder

Standalone Deployment

- Intel MKL-DNN Library
- NVIDIA TensorRT cuDNN Libraries
- ARM Compute Library

Libraries

- NVIDIA cuDNN
- Intel MKL
- ARM Compute
- NVIDIA TensorRT