Building Executable Specifications using Model Based Design

Chinmay Chinara
Mahindra Research Valley
Chennai
AGENDA

- OLD WORKFLOW
- PROBLEM STATEMENT
- NEW WORKFLOW
- RESULTS ACHIEVED
OLD WORKFLOW

DO A COMPLETE ANALYSIS OF WHAT IS REQUIRED AND DOCUMENT THEM MANUALLY

GIVE THIS AS A REQUIREMENT TO THE SUPPLIER DIRECTLY
PROBLEM STATEMENT

- Communication gap as most of our suppliers are from North-East Asia
- Huge development time
- Delay in software deliveries
- Numerous software bugs
NEW WORKFLOW

1. **CAPTURE REQUIREMENTS BASED ON PROBLEM STATEMENT**
2. **TRACE REQUIREMENTS TO CREATE MODELS AND VICE-VERSAA**
3. **MODEL**
4. **VALIDATE**
5. **REPORT**
6. **SHARED WITH SUPPLIER AS EXECUTABLE SPECIFICATION**

FBK
CAPTURE REQUIREMENTS

➢ Communication gap as most of our suppliers are from North-East Asia

→ VAST TEXTUAL CONTENT, NEED FOR MAKING IT MORE ILLUSTRATIVE

➢ Huge development time
➢ Delay in software deliveries
➢ Numerous software bugs

MAKE THE SPECIFICATION VISIBLE AND EXECUTABLE
2 SCOPE

This document describes the CAN wakeup strategy in which certain nodes (here being ECUs) are required to be functionally active with communication after IGN OFF.

3 CAN Wakeup

There are two concepts involved for wakeup communication: NM MASTER and SLAVE. NM MASTER node is the one that initiates communication on the detection of pre-defined triggers. Based on these triggers the NM MASTER node would initialize and send CAN messages on CAN port to other nodes in network. SLAVE node is the one which on receiving a wakeup message performs the activities intended.

For proceeding with the logic to be implemented consider the following ECUs:

1. NM MASTER
2. SLAVE1
3. SLAVE2
4. SLAVE3
5. SLAVE4
REQUIREMENT TRACEABILITY AND MODELLING

CANBUS_REQ_XXX: This signal would be transmitted by any node that requires CAN Bus to be alive.

If the NM_MASTER gets less than 5 REMOTE triggers then after a calibratable time it should come back to MODE1.
VALIDATION

- Design Error detection using Simulink Design Verifier
- Test case generation and validation using excel sheet / signal builder
- Coverage analysis
- Creating Hardware-In-Loop environment for actual ECU testing
SIGNAL BUILDER

EXCEL SHEET HAVING ALL AND EXPECTED OUTPUTS
IMPORT ALL USING SIGNAL BUILDER

HARNESS MODEL

INPUTS AND EXPECTED / ACTUAL OUTPUTS COMPARISON

INPUTS
ACTUAL OUTPUTS

Mahindra

CAN_WAKEUP_LOGIC

CANBUS_REQ_SLAVE1

CANBUS_REQ_SLAVE2

[REMOTE]

HW_TRIGGER_SLAVE1

Hw_TRIGGER_SLAVE2

[F8_TRIGGER_SLAVE1]

[F8_TRIGGER_SLAVE2]

[REMOTE]

CANBUS_REQ_SLAVE1_EX

CANBUS_REQ_SLAVE2_EX

[ALL_SLEEP_EX]

[ALL_SLEEP_EX]

[REMOTE]

REMOTE

START_NM

[START_NM_EX]

[REMOTE]

STS_NM_SLAVE1

STS_NM_SLAVE2

[REMOTE]

[REMOTE]

Scopa
HARDWARE-IN-LOOP

*dll file for real-time interaction between CANoE and MATLAB
RESULTS

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>TARGET ACHIEVED</th>
</tr>
</thead>
</table>
| Communication gap as most of our suppliers are from North-East Asia | → Visibility and readability of specs improved drastically
 → Real time simulation of specs |
| Huge development time | → 40% reduction in development time and software deliveries |
| Delay in software deliveries | |
| Numerous software bugs | → Iterations of buggy software reduced to 80% |
TOOLS USED

- Simulink
- Stateflow
- Simulink Design Verifier
- Simulink Verification and Validation
- Vector CANoe Integration with MATLAB
- Report Generator
QUESTIONS
??????
Disclaimer

Mahindra & Mahindra herein referred to as M&M, and its subsidiary companies provide a wide array of presentations and reports, with the contributions of various professionals. These presentations and reports are for informational purposes and private circulation only and do not constitute an offer to buy or sell any securities mentioned therein. They do not purport to be a complete description of the markets conditions or developments referred to in the material. While utmost care has been taken in preparing the above, we claim no responsibility for their accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers are requested to use the information contained herein at their own risk. These presentations and reports should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or manner, in part or as a whole, without the express consent in writing of M&M or its subsidiaries. Any unauthorized use, disclosure or public dissemination of information contained herein is prohibited. Unless specifically noted, M&M or any of its subsidiary companies is not responsible for the content of these presentations and/or the opinions of the presenters. Individual situations and local practices and standards may vary, so viewers and others utilizing information contained within a presentation are free to adopt differing standards and approaches as they see fit. You may not repackage or sell the presentation. Products and names mentioned in materials or presentations are the property of their respective owners and the mention of them does not constitute an endorsement by M&M or its subsidiary companies. Information contained in a presentation hosted or promoted by M&M is provided “as is” without warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a particular purpose. M&M or its subsidiary companies assume no liability or responsibility for the contents of a presentation or the opinions expressed by the presenters. All expressions of opinion are subject to change without notice.