Development of Control Strategy for Adaptive Front-Lighting System using Simulink and Stateflow

The Automotive Research Association of India
Agenda

- What is Adaptive Front-Lighting (AFS) System?
- Architecture of AFS
- Objective of the Project
- Challenges faced
- Configuration & Workflow
- Structure of Algorithm
 - Master-Slave Model
- Control Algorithm for Actuators
 - Synchronization between Slaves
 - Position & Speed Control
- Application of Stateflow
Adaptive Front Lighting System

A lighting device, providing beams with differing characteristics for automatic adaptation to varying conditions of use of the dipped-beam (passing beam) and, if it applies, the main-beam (driving-beam) with a minimum functional content.

- Class C – Default Mode
- Class V – Vehicle Speed not exceeding 50km/h or roads with fixed illumination
- Class E – For Vehicle Speed greater than 80km/h
- Class W – Windshield Wiper switched on for 2 minutes / Wetness of road detected
- Class R – Normal Driving Beam or Adaptive Driving Beam
- Static Bend Lighting – Lamps projected at fixed angle for bend lighting
- Dynamic Bend Lighting – Light swivels according to Bend Radius
AFS-Classes of Passing Beam

Class C Country

Class V Town

Class E Expressway

Class C & Cornering Light

Dynamic Bending
Dynamic Bend Lighting

- Inner Swivel Angle: 7° to 8°
- Outer Swivel Angle: 15°
Adaptive Driving Beam
Vehicle Level Architecture

- Vehicle Speed
- Steering Angle
- Yaw Rate
- GPS
- Image

EMS ECU

ESP ECU

Infotainment ECU

CAN Bus

BCM ECU

AFS Master ECU

L-AFS Slave ECU

R-AFS Slave ECU

Rain/Light

F-Chassis Level

R-Chassis Level

Light Control Switches
Objective

- Development of Control Strategy for AFS Passing Beam – Simulink® & Stateflow®
- Implementation of Control Strategy in Vehicle – Prototyping ECU
Challenges

- Modelling Master- [Slave + Slave] logic in a single model
- Synchronization between both the Slaves
- No use of Position Encoders
- Dynamic Swivelling Control Algorithm
- Smooth transition between Lighting Modes to avoid discomfort
Configuration & Workflow

- **Solver Selection:** Fixed Step ODE3 (Bogacki Shampine)
- **Step Size:** 0.0001s
- **State Machine Type:** Classic
- **Action Language:** C
- **Update Method:** Inherited

States
- Identification of operating Modes
- Hierarchy in State Levels

State Actions
- Define Entry, During and Exit Actions of State
- Manage external variables
- Initialize state variables
- Set the behaviour of outputs in Simulink functions

State Transitions
- Default Transitions
- Guard Transitions
- Condition Actions and Transition Actions
- Inner Transitions to simplify chart

Interface
- Invoking the Stateflow Chart
- Events Input and Data Input
- Defining Chart Properties

Simulate & Debug
Structure of Algorithm

Inputs from Vehicle
- CAN Interface blocks from Prototyping ECU

Master ECU Control Logic
- Idle State
- Diagnosis State
- Limp Home State
- Normal State
 - Country
 - Town
 - Expressway
 - Driving Beam
- Reset Actuators
- Tell Tale
- Dynamic Bending algorithm

Right Slave ECU & Left Slave ECU Control Logic
- Self Test Logic
- Diagnosis Logic
- Reset Logic
- Swivelling Logic
- Levelling Logic
Master-Slave Model

- The model comprises of a Master – [Left Slave & Right Slave] logic
- Feedback to Master from Slave leads to Algebraic Loop Error
- Model looks cluttered if more number of feedback lines are used

Workarounds

✔ Use of Memory Blocks eliminating feedback lines
✔ Data Store Read block can be used anywhere in the model which eliminates data lines
✔ Data Store Memory block had to be placed outside all subsystems common to both Master and Slave
Control Algorithm for Actuators

Left Lamp

1

Horizontal Swivelling

2

Vertical Levelling

Right Lamp

1

Horizontal Swivelling

2

Vertical Levelling

The Automotive Research Association of India
Synchronization between Slaves

- Stateflow charts run on a single thread
- Subsystem based slave logic leads to delay between both the slave actuators

Workarounds

- Both the slave models were built in single State
- Sub-States were used for constructing Right Slave and Left Slave entities
- Parallel AND Decomposition between the Slaves helps Synchronization
- Execution order of Parallel States can also be Explicit
Position & Speed Control

- Vehicle Speed and Steering Angle determine the Speed and Position for Actuator
- No Position encoders are used for continuous feedback
- Horizontal Swiveling Actuator: Hall Effect Sensor for Zero Position Sensing
- Vertical Leveling Actuator: No Sensor for position identification

Workarounds
- Initial Alignment of both the Actuators
 - Horizontal Actuator: **Hall Effect Sensor for Zero Positioning**
 - Vertical Actuator: **Stall Detection** for extreme Position identification
- Use of **Counters** for Normal tracking of Position
- **PWM Period Control** for varying Actuator Speed
Stateflow Application

GUI Support
- Graphical realization of Control Algorithm
- Implementation of Hierarchy in Algorithm
- Monitoring Control flow

Design Support
- Use of Matlab Function, Simulink Function, Truth Table and Graphical Functions
- Control over Simulink function variables
- Flexibility in controlling State Transitions
- Easy to manage variables
- Parallel Computation Algorithms using State Decomposition
- Temporal Operations

Debug Support
- Monitor Variable Changes and Data
- Breakpoints to halt simulation and monitor data
- Indication of State Inconsistencies and Conflicting Transitions
- Indication of Invalid usage of Data

The Automotive Research Association of India
Thank You...

Questions