Hardware-Software Co-Design and Prototyping on SoC FPGAs

Puneet Kumar
Prateek Sikka
Application Engineering Team
Agenda

- **Integrated Hardware / Software Top down Workflow for SoC FPGA’s, highlighting:**
 - Model Based Design Workflow for SoC FPGA’s
 - Automatic Code Generation:
 - HDL code generation for the FPGA fabric and C-Code generation for the ARM MCU
 - Automatic Interface Logic Generation:
 - Generation of the interface logic and software between the FPGA and ARM.
 - Integrated Verification:
 - Integrated HDL Verification using HDL Co-simulation and FPGA-in-Loop

- Next Steps, Q&A
Agenda

- Integrated Hardware / Software Top down Workflow for SoC FPGA’s, highlighting:
 - Model Based Design Workflow for SoC FPGA’s
 - Automatic Code Generation:
 - HDL code generation for the FPGA fabric and C-Code generation for the ARM MCU
 - Automatic Interface Logic Generation:
 - Generation of the interface logic and software between the FPGA and ARM.
 - Integrated Verification:
 - Integrated HDL Verification using HDL Co-simulation and FPGA-in-Loop

- Next Steps, Q&A
Edge Detection Demo – Behavioral Model
Edge Detection Demo – Implementation Model
You May Have Some Questions?

- How can we:
 - Implement designs on SoC FPGA’s?
 - Partition the HW and SW?
 - Generate the Interface Logic?
Design Challenges for Soc FPGA’s

- **FPGA Designers** not familiar with programming processors
- **DSP/Processor programmers** not familiar with FPGAs
- What should run on the FPGA vs. what should run on the ARM?
- No established rules for hooking up the interface between FPGA and ARM processor
Model-Based Design
Why Model-Based Design?

Requirements Development
Simulation
Code Generation
Continuous Verification
Model-Based Design:

From Concept to Production

- Automate regression testing
- Detect design errors
- Support certification and standards
- Generate efficient code
- Explore and optimize implementation tradeoffs
- Model multi-domain systems
- Explore and optimize system behavior in floating point and fixed point
- Collaborate across teams and continents
- Automate regression testing
- Detect design errors
- Support certification and standards
SoC FPGA Design Flow

User defines partitioning

MathWorks automates code and interface-model generation

MathWorks automates the build and download through the FPGA tools
Model-Based Design for SoC FPGA
Solution: C and HDL Code Generation

- Design, execute, and verify algorithms in MATLAB
- Automatically generate C or HDL code
- Deploy generated code on hardware
Code Generation Products for VHDL/Verilog

HDL Coder™
Automatically generate VHDL or Verilog from MATLAB code and Simulink Model

MATLAB® Coder™
Automatically generate C and C++ from MATLAB code

Fixed-Point Designer™
provides fixed-point data types and arithmetic
Code Generation Products for C/C++

- **MATLAB® Coder™**
 Automatically generate C and C++ from MATLAB code

- **Simulink® Coder™**
 Automatically generate C and C++ from Simulink models and Stateflow charts

- **Embedded Coder™**
 Automatically generate C and C++ optimized for embedded systems
Edge Detection Demo – Behavioral Model
Workflow for Video Image Processing

Concept Development

Algorithm Development

Prototyping

Architecture design

Prototyping

Chip design

Frame based

Image/Video Engineer

Pixel based

HW Engineer
Vision HDL Toolbox

Design and prototype video image processing systems

- **Modeling hardware behavior of the algorithms**
 - Pixel-based functions and blocks
 - Conversion between frames and pixels
 - Standard and custom frame sizes

- **Prototyping algorithms on hardware**
 - Efficient and readable HDL code
 - FPGA-in-the-loop testing and acceleration
Agenda

- Integrated Hardware / Software Top down Workflow for SoC FPGA’s, highlighting:
 - Model Based Design Workflow for SoC FPGA’s
 - Automatic Code Generation:
 - HDL code generation for the FPGA fabric and C-Code generation for the ARM MCU
 - Automatic Interface Logic Generation:
 - Generation of the interface logic and software between the FPGA and ARM.
 - Integrated Verification:
 - Integrated HDL Verification using HDL Co-simulation and FPGA-in-Loop

- Next Steps, Q&A
HW-SW Co-Design: It’s all about the Workflow

Prepare model for IP core generation
Configure Interface Logic
RTL Code Generation for IP Core
Generate Software/Hardware Model
Synthesis/ Bit File Generation
Deployment
Model-Based Design flow using MATLAB/Simulink
from Algorithm to FPGA Implementation

MATLAB® and Simulink®
Algorithm and System Design

HDL Coder
RTL Creation

HDL Verifier
HDL Co-Simulation

RTL
Back Annotation

Implement Design
Synthesis
Map
Place & Route

Verification
Functional Simulation
Static Timing Analysis
Timing Simulation

HDL Verifier
FPGA in the Loop

Design
Algorithm Development
MATLAB Simulink Stateflow
SoC FPGA Model-Based Design Workflow
SoC FPGA Model-Based Design Workflow

MATLAB® and Simulink®
Algorithm and System Design

Simulink Model
Configure Interface Logic

- Prepare model for IP core generation
- Configure Interface Logic
- RTL Code Generation for IP Core
- Generate Software/Hardware Model
- Synthesis/Bit File Generation
- Deployment
RTL Code Generation for IP Core

1. Prepare model for IP core generation
2. Configure Interface Logic
3. RTL Code Generation for IP Core
4. Generate Software/Hardware Model
5. Synthesis/Bit File Generation
6. Deployment
Full Bidirectional traceability
SoC FPGA Model-Based Design Workflow

MATLAB® and Simulink®
Algorithm and System Design

HDL IP Core
Generation

Programmable Logic IP Core
Algorithm from
MATLAB/ Simulink

AXI4-Stream Video In
AXI4-Stream Video Out
External Ports

AXI Lite Accessible Registers

HDL IP Core
Generation

HW
SW
SoC FPGA Model-Based Design Workflow

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

FPGA Bitstream

Zynq Platform

EDK Project

AXI Lite Accessible Registers

Algorithm from MATLAB/ Simulink

Programmable Logic IP Core

AXI4-Stream Video In

AXI4-Stream Video Out

External Ports

Processing System

AXI Video DMA

AXI Lite Accessible Registers

Algorithm from MATLAB/ Simulink

Programmable Logic IP Core

External Ports

EDK Integration
Generate Software/Hardware model

- Prepare model for IP core generation
- Configure Interface Logic
- RTL Code Generation for IP Core
- Generate Software/Hardware Model
- Synthesis/ Bit File Generation
- Deployment
SoC FPGA Model-Based Design Workflow

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

HDL IP Core Generation

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

EDK Integration

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model Generation

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model Generation

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

FPGA Bitstream

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

FPGA Bitstream

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Build

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

Zynq Platform

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

Zynq Platform

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Build

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

Zynq Platform

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model

MATLAB® and Simulink® Algorithm and System Design

HDL IP Core Generation

EDK Integration

SW Interface Model Generation

FPGA Bitstream

SW Build

Zynq Platform

SW Interface Model
SoC FPGA Model-Based Design Workflow

- Real-time Parameter Tuning and Verification
 - External Mode
 - Processor-in-the-loop
Fast Prototyping and Iteration

Fast prototyping, iteration, and live probing/tuning directly on SoC FPGA hardware
Zynq HW/SW Co-design Workflow Summary

1. **HW Design**
 - Simulink Model

2. **IP Core Generation**
 - AXI Lite Accessible registers
 - Algorithm from MATLAB and Simulink

3. **Generate SW Interface Model**
 - SW Interface Model
 - Processor
 - AXI-Lite Bus

4. **SW Build**
 - FPGA Bitstream

5. **FPGA IP Core**
 - Algorithm from MATLAB and Simulink
 - External Ports

6. **SW I/O Driver Blocks**
 - SW Interface Model

7. **Embedded System Project**
 - Embedded System Integration

The workflow summary illustrates the process of developing a Zynq HW/SW co-design, starting with HW design, followed by IP core generation, generating SW interface models, and finally building SW and FPGA bitstream for the embedded system project.
Agenda

- Integrated Hardware / Software Top down Workflow for SoC FPGA’s, highlighting:
 - Model Based Design Workflow for SoC FPGA’s
 - Automatic Code Generation:
 - HDL code generation for the FPGA fabric and C-Code generation for the ARM MCU
 - Automatic Interface Logic Generation:
 - Generation of the interface logic and software between the FPGA and ARM.
 - Integrated Verification:
 - Integrated HDL Verification using HDL Co-simulation and FPGA-in-Loop

- Next Steps, Q&A
Enroll in Upcoming Training Courses

<table>
<thead>
<tr>
<th>No</th>
<th>Start Date</th>
<th>Course Name</th>
<th>City</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>02nd - 03rd May</td>
<td>Signal Processing with MATLAB</td>
<td>Bangalore</td>
</tr>
<tr>
<td>02</td>
<td>04th - 05th May</td>
<td>Image Processing with MATLAB</td>
<td>Bangalore</td>
</tr>
<tr>
<td>03</td>
<td>06th May</td>
<td>Computer Vision with MATLAB</td>
<td>Bangalore</td>
</tr>
<tr>
<td>04</td>
<td>16th - 17th June</td>
<td>Machine Learning with MATLAB</td>
<td>Bangalore</td>
</tr>
<tr>
<td>05</td>
<td>11th - 12th July</td>
<td>Generating HDL Code from Simulink</td>
<td>Bangalore</td>
</tr>
<tr>
<td>06</td>
<td>13th - 14th July</td>
<td>Programming Xilinx Zynq SoCs with MATLAB and Simulink</td>
<td>Bangalore</td>
</tr>
</tbody>
</table>

www.mathworks.in/training
MathWorks India – Services and Offerings

- **Technical Evangelist**

- **Product Training:**
 www.mathworks.in/training

- **Application Engineering**

- **Technical Support local for India:**
 www.mathworks.in/myservicerequests

- **Customer Service for non-technical questions:**
 info@mathworks.in

- **Knowledge and marketing resources:**
 www.mathworks.in, webinars, seminars, conferences
Contact MathWorks India

URL: http://www.mathworks.in
E-mail: info@mathworks.in
Technical Support: www.mathworks.in/myservicerequests
Tel: +91-80-6632 6000
Fax: +91-80-6632 6010

- MathWorks India Private Limited
 9th Floor, ‘B’ Wing, Etamin Block
 Prestige Technology Park II
 Marathahalli – Sarjapur Ring Road
 Bangalore – 560103, Karnataka
 India

Thank You for Attending
Talk to Us – We are Happy to Support You