MATLAB EXPO 2018

Automated Driving Development with MATLAB® and Simulink®

MANOHAR REDDY M
Using Model-Based Design to develop high quality and reliable Active Safety & Automated Driving Systems

Jonny Andersson
Senior Engineer
Scania

Thorsten Gerke
Automotive Industry Manager EMEA
MathWorks
Scania: Model-Based Design and Code Generation for AEB Sensor Fusion

- 1.5M km of recorded data
- 3+ years of driving time
- 12 hours re-simulation
Voyage Develops Longitudinal Controls for Self-Driving Taxis

Challenge
Develop a controller that enables a self-driving car to maintain a target velocity and keep a safe distance from obstacles.

Solution
Use Simulink® to design a longitudinal model predictive controller. Tune parameters based on experimental data imported into MATLAB®. Deploy the controller as an ROS node using Robotics System Toolbox™. Generate source code with Simulink Coder™, and package it as a Docker container.

Results
- Development speed tripled
- Easy integration with open-source software
- Simulink algorithms delivered as production software

“We were searching for a prototyping solution that was fast for development and robust for production. We decided to go with Simulink for controller development and code generation, while using MATLAB to automate development tasks.”
- Alan Mond, Voyage

Voyage’s self-driving car in San Jose, California.
How can you use MATLAB and Simulink to develop automated driving algorithms?

- Perception
- Control
- Planning
Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

- Deep learning
- Sensor fusion with live data
- Sensor models & model predictive control
- Path planning

Perception Control Planning
How can you use MATLAB and Simulink to develop perception algorithms?

- Deep learning
- Sensor fusion with live data
- Control
- Path planning
- Perception
- Sensor models & model predictive control

MATLAB EXPO 2018
Automated Driving System Toolbox introduced: Ground Truth Labeling App to label video data
Automate labeling lanes with Ground Truth Labeler

Run automation algorithm
Automated Driving System Toolbox introduced examples to:

- Accelerate the process of Ground Truth Labeling

 ▪ Label detections with Ground Truth Labeler App
 ▪ Add your own automation algorithm to Ground Truth Labeler App
 ▪ Extend connectivity of Ground Truth Labeler App to visualize lidar data
Specify attributes and sublabels in Ground Truth Labeler App
Automate labeling pixels with Ground Truth Labeler
Learn more about developing deep learning perception algorithms with these examples

- **Train free space detection network** using deep learning
 Computer Vision System Toolbox™

- **Add semantic segmentation automation algorithm to Ground Truth Labeler App**
 Automated Driving System Toolbox™

- **Generate CUDA® code** to execute directed acyclic graph network on an NVIDIA GPU
 GPU Coder™

Robotics and Autonomous Systems

<table>
<thead>
<tr>
<th>14:30</th>
<th>Demystifying Deep Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dr. Amod Anandkumar, MathWorks</td>
</tr>
</tbody>
</table>

MATLAB EXPO 2018
Free Space Detection Using Semantic Segmentation
How can you use MATLAB and Simulink to develop perception algorithms?

- **Deep learning**
- **Sensor models & model predictive control**
- **Sensor fusion with live data**
- **Path planning**

Perception

Control

Planning
Automated Driving System Toolbox introduced: Multi-object tracker to develop sensor fusion algorithms

- Assigns detections to tracks
- Creates new tracks
- Updates existing tracks
- Removes old tracks

- Predicts and updates state of track
- Supports linear, extended, and unscented Kalman filters

Multi-Object Tracker

Detections → **Track Manager** → **Tracking Filter** → **Tracks**
Automated Driving System Toolbox introduced examples to:

Develop sensor fusion algorithms with recorded data

- Design multi-object tracker based on logged vehicle data
- Generate C/C++ code from algorithm which includes a multi-object tracker
How can I test my sensor fusion algorithm with live data?
Test forward collision warning algorithm with live data from vehicle
Test forward collision warning algorithm with live data from “surrogate” vehicle
Send live CAN FD and TCP/IP data
Receive live CAN FD and TCP/IP data
Generate C/C++ code for algorithm
Stream live CAN FD and TCP/IP data into compiled algorithm code
Learn about developing sensor fusion algorithms with live data using this example

- **Stream CAN FD** data to prototype algorithms on your laptop

Vehicle Network Toolbox™
How can you use MATLAB and Simulink to develop control algorithms?

- Deep learning
- Sensor fusion with live data
- Perception
- Control
- Planning

Sensor models & model predictive control

Path planning

MATLAB EXPO 2018
Automated Driving System Toolbox introduced examples to:

- Synthesize detections to test sensor fusion algorithms

- Synthesize radar detections with probabilistic impairments
- Synthesize vision detections with probabilistic impairments
- Synthesize scenario to test multi-object tracker
Automated Driving System Toolbox introduced:
Radar and vision detections for closed loop simulation

<table>
<thead>
<tr>
<th>Release</th>
<th>Fuse</th>
<th>Synthesize</th>
<th>Visualize</th>
</tr>
</thead>
<tbody>
<tr>
<td>R2017a</td>
<td><code>multiObjectTracker</code></td>
<td><code>radarDetectionGenerator</code></td>
<td><code>birdsEyePlot</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td><code>visionDetectionGenerator</code></td>
<td></td>
</tr>
<tr>
<td>R2017b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Voyage Develops Longitudinal Controls for Self-Driving Taxis

Challenge
Develop a controller that enables a self-driving car to maintain a target velocity and keep a safe distance from obstacles.

Solution
Use Simulink® to design a longitudinal model predictive controller. Tune parameters based on experimental data imported into MATLAB®. Deploy the controller as an ROS node using Robotics System Toolbox™. Generate source code with Simulink Coder™, and package it as a Docker container.

Results
- Development speed tripled
- Easy integration with open-source software
- Simulink algorithms delivered as production software

“*We were searching for a prototyping solution that was fast for development and robust for production. We decided to go with Simulink for controller development and code generation, while using MATLAB to automate development tasks.*”

- Alan Mond, Voyage
Simulate closed loop system with radar/vision detections, sensor fusion, and model-predictive control
Synthesize detections to test sensor fusion and model-predictive controller
Compare classical and model predictive control algorithms

MPC is more aggressive in this example
Automated Driving Applications with Model Predictive Controls

Automated Driving Applications

Adaptive Cruise Control System Using Model Predictive Control
Use the block in Simulink® and demonstrates the control objectives and constraints of this block.
Open Script

Lane Keeping Assist System Using Model Predictive Control
Use the block in Simulink® and demonstrates the control objectives and constraints of this block.
Open Script

Obstacle Avoidance Using Adaptive Model Predictive Control
Make a vehicle (ego car) follow a reference velocity and avoid obstacles in the lane using adaptive MPC. To do so, you update the
Open Script

Adaptive Cruise Control with Sensor Fusion
Implement a sensor fusion based automotive adaptive cruise controller for a vehicle traveling on a curved road using sensor fusion.
Open Model

Lane Keeping Assist with Lane Detection
Simulate and generate code for an automotive lane keeping assist (LKA) controller.
Open Model
Vision Detection Generator models lane detection sensor

Vision Detection Generator

Sensor simulation block used to generate vision detections from simulated actor poses. Detections are generated at intervals of the sensor's update interval. A statistical model generates measurement noise, true detections, and false positives. The random numbers used by the statistical model are controlled by the random number generator settings on the Measurements tab.

- **Source code**

Parameters

- **Unique identifier of sensor:**
 - 1

- **Types of detections generated by sensor:**
 - Lanes and objects

- **Required interval between sensor updates (s):**
 - Lanes only

- **Required Interval between lane detection updates (s):**
 - Lanes with occlusion

Sensor Extrinsics

- **Sensor's (x,y) position (m):**
 - [1.9, 0]

- **Sensor's height (m):**
 - 1.1

- **Yaw angle of sensor mounted on ego vehicle (deg):**
 - 0

- **Pitch angle of sensor mounted on ego vehicle (deg):**
 - 1

- **Roll angle of sensor mounted on ego vehicle (deg):**
 - 0

MATLAB EXPO 2018
Create highway double curve with drivingScenario

- Driver waypoints simulate distraction at curvature changes
Simulate distracted driver
Simulate lane keep assist at distraction events
Compare distracted and assisted results

- Detect lane departure and maintain lane during distraction
Simulate lane following by increasing minimum safe distance
Explore lane following results

- Vehicle stays within lane boundaries
Graphically edit scenarios with Driving Scenario Designer
Learn about synthesizing sensor detections to develop control algorithms with these examples

- Simulate and generate C++ for model-predictive control and sensor fusion algorithms
- Simulate and generate C++ for model-predictive control with lane detections
- Edit roads, cuboid actors, and sensors with Driving Scenario Designer App drivingScenarioDesigner
Learn about modeling vehicle dynamics to develop control algorithms with these examples

- **Simulate vehicle dynamics** for closed loop design
 Vehicle Dynamics Blockset™

- **Co-simulate with Unreal Engine** and to set actor positions get camera image
 Vehicle Dynamics Blockset™

Controls and Embedded Systems

14:30 Full Vehicle Simulation for Electrification and Automated Driving Applications
Prasanna Deshpande, MathWorks
R Vijayalayan, MathWorks
How can you use MATLAB and Simulink to develop planning algorithms?

- Deep learning
- Sensor models & model predictive control
- Perception
- Control
- Sensor fusion with live data
- Planning
- Path planning
Robotics System Toolbox introduced: Connectivity with the ROS ecosystem

- Communicate via ROS to integrate with externally authored ROS components
- Communication with Gazebo to visualize and simulated system
- Follow path for differential drive robot with ROS based simulator
We are investing in design and simulation of path planning for automobiles.

Motion planning: Plan path to next waypoint (RRT*)

Rapidly-exploring Random Tree (RRT*)
Learn about developing path planning algorithms with these examples

- **Plan path** for automobile given pre-defined map
 Automated Driving System Toolbox™

- **Plot map tiles** using World Street Map (Esri)
 Automated Driving System Toolbox™

- **Simulate V2X communication** to assess channel throughput
 LTE System Toolbox™
Examples of how you can use MATLAB and Simulink to develop automated driving algorithms

Deep learning

Sensor models & model predictive control

Sensor fusion with live data

Path planning

Perception

Control

Planning
MathWorks can help you customize MATLAB and Simulink for your automated driving application

- Web based ground truth labeling
 - Consulting project with Caterpillar
 - [2017 MathWorks Automotive Conference](#)

- Lidar ground truth labeling
 - Joint presentation with Autoliv
 - 2018 MathWorks Automotive Conference (May 2nd, Plymouth MI)

- Lidar sensor model for Unreal Engine
 - Joint paper with Ford
 - SAE Paper 2017-01-0107
How can we help you can use MATLAB and Simulink to develop automated driving algorithms?
Speaker Details

MANOHAR REDDY M

Email: Manohar.Reddy@mathworks.in
LinkedIn: https://www.linkedin.com/in/manoharreddym

Contact MathWorks India

Products/Training Enquiry Booth
Call: 080-6632-6000
Email: info@mathworks.in

Your feedback is valued.
Please complete the feedback form provided to you.