Development of Machine learning model using Simulink
How is the talk paced?

- Introduction
- What is the Problem
- What is the approach & solution
- What tools are used to Realize it
- What are our Observations
- Results
Introduction

- INTRODUCTION OF BS4 REGULATIONS
- ECU + SENSORS
- ECU CAN RUN A HOST OF PROGRAMS
- BETTER INFORMATION PROCESSING
- ECU + SENSORS + ALGORITHMS
- CAN MACHINE LEARNING BE USED?
What is the problem?

- Road Surface and its condition is a critical parameter for vehicle operation
- Diversified categories of road with different terrain combinations
- Terrain change needs a change in driving style

What can I predict if I somehow know the road condition?

- Tire life and wear
- Vehicle Durability and aging impact
- Fuel Economy Impact

How can I know the road condition?

Use Machine Learning to Classify Road Condition
Step 01: What are the Road Conditions

- **A Class**: National Highway / Expressway (Four/Six Lane)
 - Operating Speed 60 ~ Max. Speed (Kmph)
 - GOOD ROAD

- **B Class**: Single Lane State Highway / City Route
 - Operating Speed 20 ~ 50 Kmph
 - GOOD ROAD

- **C Class**: Broken Tar Road / Village Road
 - Operating Speed 20 ~ 30 Kmph
 - BAD ROAD

- **D Class**: No Road Condition / Damaged Road
 - Operating Speed < 20 Kmph
 - BAD ROAD
The Machine Learning Way?
Our Workflow

- Internet Study
- Collect and Label Data
- Process Data
- Extract Features
- ML Model is generated using Classification Learner Application
- Then, ML Model is Optimized
- Build Model in Simulink
- Generate code and flash it on to a target hardware
Block Diagram of the Simulink Model

- Sensor Data
- Signal Filtering
- Sensor Fusion
- MLE Model
- Road Condition Estimation
- Feedback Control

Can serve as input to other algorithms
Ground Truth Labelling is done by manually mapping the route as per road condition during vehicle data collection trails.
Data Analysis and Feature Extraction

- Identify Key Variables
- Data Analysis
- Analyze and Extract Features
- **Filter Designer tool** is used to design a low pass filter of required order and transition band.
- To analyze original as well as the filtered signals in time and frequency domain, **Signal Analyzer Tool** is used.
Digital Signal Processing

Raw Signal

Power spectra of signal

True signal + Noise

Setting type and Frequency specifications of filter

Realizing filter in simulink

Filter settings
Embedded Coder

- Setup Embedded Coder
- Configuration
- Target Selection and Settings
- Initial Issues the team faced
- Build and Flash code
- Improved usage of Embedded coder
Hardware Implementation

Rapid Prototype Controller

Input

- Input Blocks [Analog/Digital Input]

Processing

- CPU [Core Algorithm]

Output

- Output blocks [Digital output]
- Communication Channels Blocks [CAN,SCI,I2C]

Simulink Model
Observations

- Road Condition Estimation is possible with in-built vehicle sensors
- There is a scope to define more road categories

Results

- Good prediction capabilities seen with use of ML model

Conclusion

- ML Models might provide good initial model to predict inputs without an empirical model
- Simple ML model deployment is possible on controllers with limited memory footprint and there is scope to further optimize
THANK YOU